YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quadrature-Free Implementation of a Discontinuous Galerkin Global Shallow-Water Model via Flux Correction Procedure

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 004::page 1335
    Author:
    Nair, Ramachandran D.
    DOI: 10.1175/MWR-D-14-00174.1
    Publisher: American Meteorological Society
    Abstract: he discontinuous Galerkin (DG) discretization relies on an integral (weak) formulation of the hyperbolic conservation law, which leads to the evaluation of several surface and line integrals for multidimensional problems. An alternative formulation of the DG method is possible under the flux reconstruction (FR) framework, where the equations are solved in differential form and the discretization is free from quadrature rules, resulting in computationally efficient algorithms. The author has implemented a quadrature-free form of the nodal DG method based on the FR approach combined with spectral differencing (SD), in a shallow-water (SW) model employing cubed-sphere geometry. The performance of the SD model is compared with the regular nodal DG variant of the SW model using several benchmark tests, including a viscous test case. A positivity-preserving local filter is tested for SD advection that removes spurious oscillations while being conservative and accurate. In this implementation, the SD formulation is found to be 18% faster than the DG method for inviscid SW tests cases and 24% faster for the viscous case. The results obtained by the SD formulation are on par with the regular nodal DG formulation in terms of accuracy and convergence.
    • Download: (1.256Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quadrature-Free Implementation of a Discontinuous Galerkin Global Shallow-Water Model via Flux Correction Procedure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230527
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorNair, Ramachandran D.
    date accessioned2017-06-09T17:32:19Z
    date available2017-06-09T17:32:19Z
    date copyright2015/04/01
    date issued2015
    identifier issn0027-0644
    identifier otherams-86916.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230527
    description abstracthe discontinuous Galerkin (DG) discretization relies on an integral (weak) formulation of the hyperbolic conservation law, which leads to the evaluation of several surface and line integrals for multidimensional problems. An alternative formulation of the DG method is possible under the flux reconstruction (FR) framework, where the equations are solved in differential form and the discretization is free from quadrature rules, resulting in computationally efficient algorithms. The author has implemented a quadrature-free form of the nodal DG method based on the FR approach combined with spectral differencing (SD), in a shallow-water (SW) model employing cubed-sphere geometry. The performance of the SD model is compared with the regular nodal DG variant of the SW model using several benchmark tests, including a viscous test case. A positivity-preserving local filter is tested for SD advection that removes spurious oscillations while being conservative and accurate. In this implementation, the SD formulation is found to be 18% faster than the DG method for inviscid SW tests cases and 24% faster for the viscous case. The results obtained by the SD formulation are on par with the regular nodal DG formulation in terms of accuracy and convergence.
    publisherAmerican Meteorological Society
    titleQuadrature-Free Implementation of a Discontinuous Galerkin Global Shallow-Water Model via Flux Correction Procedure
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00174.1
    journal fristpage1335
    journal lastpage1346
    treeMonthly Weather Review:;2015:;volume( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian