YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wintertime Subkilometer Numerical Forecasts of Near-Surface Variables in the Canadian Rocky Mountains

    Source: Monthly Weather Review:;2014:;volume( 143 ):;issue: 002::page 666
    Author:
    Vionnet, Vincent
    ,
    Bélair, Stéphane
    ,
    Girard, Claude
    ,
    Plante, André
    DOI: 10.1175/MWR-D-14-00128.1
    Publisher: American Meteorological Society
    Abstract: umerical weather prediction (NWP) systems operational at many national centers are nowadays used at the kilometer scale. The next generation of NWP models will provide forecasts at the subkilometer scale. Large impacts are expected in mountainous terrain characterized by highly variable orography. This study investigates the ability of the Canadian NWP system to provide an accurate forecast of near-surface variables at the subkilometer scale in the Canadian Rocky Mountains in wintertime when the region is fully covered by snow. Observations collected at valley and high-altitude stations are used to evaluate forecast accuracy at three different grid spacing (2.5, 1, and 0.25 km) over a period of 15 days. Decreasing grid spacing was found to improve temperature forecasts at high-altitude stations because of better orography representation. In contrast, no improvement is obtained at valley stations due to an inability of the model to fully capture at all resolutions the intensity of valley cold pools forming during nighttime. Errors in relative humidity reveal that the model tends to overestimate relative humidity at all resolutions, without improvement with decreasing grid spacing. Wind speed forecasts show large improvements with decreasing grid spacing for high-altitude stations exposed to or sheltered from wind. However, no systematic improvement with decreasing grid spacing is found for all stations, which is similar to previous studies. In addition, the model?s sensitivity at subkilometer grid spacing is investigated by evaluating the effects of (i) accounting for additional drag generated by subgrid orographic features, (ii) considering slope angle and aspect on surface radiation, and (iii) using high-resolution initialization for the surface fields.
    • Download: (2.761Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wintertime Subkilometer Numerical Forecasts of Near-Surface Variables in the Canadian Rocky Mountains

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230501
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorVionnet, Vincent
    contributor authorBélair, Stéphane
    contributor authorGirard, Claude
    contributor authorPlante, André
    date accessioned2017-06-09T17:32:12Z
    date available2017-06-09T17:32:12Z
    date copyright2015/02/01
    date issued2014
    identifier issn0027-0644
    identifier otherams-86893.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230501
    description abstractumerical weather prediction (NWP) systems operational at many national centers are nowadays used at the kilometer scale. The next generation of NWP models will provide forecasts at the subkilometer scale. Large impacts are expected in mountainous terrain characterized by highly variable orography. This study investigates the ability of the Canadian NWP system to provide an accurate forecast of near-surface variables at the subkilometer scale in the Canadian Rocky Mountains in wintertime when the region is fully covered by snow. Observations collected at valley and high-altitude stations are used to evaluate forecast accuracy at three different grid spacing (2.5, 1, and 0.25 km) over a period of 15 days. Decreasing grid spacing was found to improve temperature forecasts at high-altitude stations because of better orography representation. In contrast, no improvement is obtained at valley stations due to an inability of the model to fully capture at all resolutions the intensity of valley cold pools forming during nighttime. Errors in relative humidity reveal that the model tends to overestimate relative humidity at all resolutions, without improvement with decreasing grid spacing. Wind speed forecasts show large improvements with decreasing grid spacing for high-altitude stations exposed to or sheltered from wind. However, no systematic improvement with decreasing grid spacing is found for all stations, which is similar to previous studies. In addition, the model?s sensitivity at subkilometer grid spacing is investigated by evaluating the effects of (i) accounting for additional drag generated by subgrid orographic features, (ii) considering slope angle and aspect on surface radiation, and (iii) using high-resolution initialization for the surface fields.
    publisherAmerican Meteorological Society
    titleWintertime Subkilometer Numerical Forecasts of Near-Surface Variables in the Canadian Rocky Mountains
    typeJournal Paper
    journal volume143
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00128.1
    journal fristpage666
    journal lastpage686
    treeMonthly Weather Review:;2014:;volume( 143 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian