YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Small-Scale Precipitation Elements in Midlatitude Cyclones Crossing the California Sierra Nevada

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 007::page 2842
    Author:
    Medina, Socorro
    ,
    Houze, Robert A.
    DOI: 10.1175/MWR-D-14-00124.1
    Publisher: American Meteorological Society
    Abstract: adar data in some frontal systems passing over the Sierra Nevada of California show large variance on scales of ~10 km. The most prominent features are a few kilometers in scale and are similar to small-scale precipitation cells embedded in fronts seen over other mountain ranges. Other frontal systems crossing the Sierras are characterized by more uniform air motions. Updrafts in large-variance storms have characteristics of shear-induced turbulence, although buoyant instability may also contribute. Large-variance storms occur under stronger upstream winds and vertically integrated cross- and along-barrier moisture fluxes. Rain gauges indicate that large-variance storms have precipitation greater than smaller-variance storms. Stronger horizontal moisture fluxes may provide greater mean upslope condensation rates; however, it is hypothesized that accelerated microphysical processes are needed to most efficiently convert the condensate into precipitation that falls out on the lower slopes before being carried downstream. Radar data indicate that the turbulence embodied in the cellular motions of the large-variance cases is consistent with microphysical enhancement resulting from updraft elements producing pockets of liquid water conducive to riming and coalescence. In addition, radar spectrum-width data show that the cells contain strong subcell-scale turbulence conducive to particle collisions and aggregation. Polarimetric radar data just below the 0°C level show large raindrops in the cells, consistent with aggregation occurring in cells just above the melting layer. It is hypothesized that such enhanced microphysical processes in large-variance cases hasten the growth and fallout in the regions of maximum condensation over the windward slopes.
    • Download: (5.909Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Small-Scale Precipitation Elements in Midlatitude Cyclones Crossing the California Sierra Nevada

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230496
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMedina, Socorro
    contributor authorHouze, Robert A.
    date accessioned2017-06-09T17:32:11Z
    date available2017-06-09T17:32:11Z
    date copyright2015/07/01
    date issued2015
    identifier issn0027-0644
    identifier otherams-86889.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230496
    description abstractadar data in some frontal systems passing over the Sierra Nevada of California show large variance on scales of ~10 km. The most prominent features are a few kilometers in scale and are similar to small-scale precipitation cells embedded in fronts seen over other mountain ranges. Other frontal systems crossing the Sierras are characterized by more uniform air motions. Updrafts in large-variance storms have characteristics of shear-induced turbulence, although buoyant instability may also contribute. Large-variance storms occur under stronger upstream winds and vertically integrated cross- and along-barrier moisture fluxes. Rain gauges indicate that large-variance storms have precipitation greater than smaller-variance storms. Stronger horizontal moisture fluxes may provide greater mean upslope condensation rates; however, it is hypothesized that accelerated microphysical processes are needed to most efficiently convert the condensate into precipitation that falls out on the lower slopes before being carried downstream. Radar data indicate that the turbulence embodied in the cellular motions of the large-variance cases is consistent with microphysical enhancement resulting from updraft elements producing pockets of liquid water conducive to riming and coalescence. In addition, radar spectrum-width data show that the cells contain strong subcell-scale turbulence conducive to particle collisions and aggregation. Polarimetric radar data just below the 0°C level show large raindrops in the cells, consistent with aggregation occurring in cells just above the melting layer. It is hypothesized that such enhanced microphysical processes in large-variance cases hasten the growth and fallout in the regions of maximum condensation over the windward slopes.
    publisherAmerican Meteorological Society
    titleSmall-Scale Precipitation Elements in Midlatitude Cyclones Crossing the California Sierra Nevada
    typeJournal Paper
    journal volume143
    journal issue7
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00124.1
    journal fristpage2842
    journal lastpage2870
    treeMonthly Weather Review:;2015:;volume( 143 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian