YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Representation of the Subgrid-Scale Turbulent Transport in Convective Boundary Layers at Gray-Zone Resolutions

    Source: Monthly Weather Review:;2014:;volume( 143 ):;issue: 001::page 250
    Author:
    Shin, Hyeyum Hailey
    ,
    Hong, Song-You
    DOI: 10.1175/MWR-D-14-00116.1
    Publisher: American Meteorological Society
    Abstract: arameterization of the unresolved vertical transport in the planetary boundary layer (PBL) is one of the key physics algorithms in atmospheric models. This study attempts to represent the subgrid-scale (SGS) turbulent transport in convective boundary layers (CBLs) at gray-zone resolutions by investigating the effects of grid-size dependency in the vertical heat transport parameterization for CBL simulations. The SGS transport profile is parameterized based on the 2013 conceptual derivation by Shin and Hong. First, nonlocal transport via strong updrafts and local transport via the remaining small-scale eddies are separately calculated. Second, the SGS nonlocal transport is formulated by multiplying a grid-size dependency function with the total nonlocal transport profile fit to the large-eddy simulation (LES) output. Finally, the SGS local transport is formulated by multiplying a grid-size dependency function with the total local transport profile, which is calculated using an eddy-diffusivity formula. The new algorithm is evaluated against the LES output and compared with a conventional nonlocal PBL parameterization.For ideal CBL cases, by considering the scale dependency in the parameterized vertical heat transport, improvements over the conventional nonlocal K-profile model appear in mean profiles, resolved and SGS vertical transport profiles with their grid-size dependency, and the energy spectrum. Real-case simulations for convective rolls show that the simulated roll structures are more robust with stronger intensity when the new algorithm is used.
    • Download: (2.180Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Representation of the Subgrid-Scale Turbulent Transport in Convective Boundary Layers at Gray-Zone Resolutions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230490
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorShin, Hyeyum Hailey
    contributor authorHong, Song-You
    date accessioned2017-06-09T17:32:10Z
    date available2017-06-09T17:32:10Z
    date copyright2015/01/01
    date issued2014
    identifier issn0027-0644
    identifier otherams-86883.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230490
    description abstractarameterization of the unresolved vertical transport in the planetary boundary layer (PBL) is one of the key physics algorithms in atmospheric models. This study attempts to represent the subgrid-scale (SGS) turbulent transport in convective boundary layers (CBLs) at gray-zone resolutions by investigating the effects of grid-size dependency in the vertical heat transport parameterization for CBL simulations. The SGS transport profile is parameterized based on the 2013 conceptual derivation by Shin and Hong. First, nonlocal transport via strong updrafts and local transport via the remaining small-scale eddies are separately calculated. Second, the SGS nonlocal transport is formulated by multiplying a grid-size dependency function with the total nonlocal transport profile fit to the large-eddy simulation (LES) output. Finally, the SGS local transport is formulated by multiplying a grid-size dependency function with the total local transport profile, which is calculated using an eddy-diffusivity formula. The new algorithm is evaluated against the LES output and compared with a conventional nonlocal PBL parameterization.For ideal CBL cases, by considering the scale dependency in the parameterized vertical heat transport, improvements over the conventional nonlocal K-profile model appear in mean profiles, resolved and SGS vertical transport profiles with their grid-size dependency, and the energy spectrum. Real-case simulations for convective rolls show that the simulated roll structures are more robust with stronger intensity when the new algorithm is used.
    publisherAmerican Meteorological Society
    titleRepresentation of the Subgrid-Scale Turbulent Transport in Convective Boundary Layers at Gray-Zone Resolutions
    typeJournal Paper
    journal volume143
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00116.1
    journal fristpage250
    journal lastpage271
    treeMonthly Weather Review:;2014:;volume( 143 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian