YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Extreme Convection of the Near-Equatorial Americas, Africa, and Adjoining Oceans as seen by TRMM

    Source: Monthly Weather Review:;2014:;volume( 143 ):;issue: 001::page 298
    Author:
    Zuluaga, Manuel D.
    ,
    Houze, Robert A.
    DOI: 10.1175/MWR-D-14-00109.1
    Publisher: American Meteorological Society
    Abstract: his study documents the preferred location and diurnal cycle of extreme convective storms that occur in the tropical band containing the east Pacific Ocean, Central and South America, the Atlantic Ocean, and northern Africa. Data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar show three types of convective-stratiform structures that constitute extreme convective events: deep convective cores (DCCs), wide convective cores (WCCs), and broad stratiform regions (BSRs). Interim ECMWF Re-Analysis (ERA-Interim) data show the associated synoptic environmental factors associated with the occurrence of extreme convective features. The DCC, WCC, and BSR echoes are associated with early, middle, and late stages of convective system development, respectively, and the statistics and timing of their occurrence are related to topography and life cycle behavior of the convection. Storms containing DCC occur primarily over the Sudanian savannas of Africa and near the mountains in northern South America, being diurnally controlled. Storms with WCC manifest over land, in the same regions as the DCC, but also over oceanic regions. They appear around the clock but with maximum frequency at night. They are favored in regions of midlevel synoptic-scale low pressure systems, which over the sub-Sahara are the troughs of easterly waves. Storms containing BSR maximize over oceanic regions west of Africa and South America, where they exhibit a weak diurnal cycle with a slight midmorning maximum. Off the west coast of South America, the storms with WCC and BSR have longer lifetimes enhanced by orographic lifting over the Andes. The storms with BSR in the east Pacific Ocean often develop into tropical cyclones.
    • Download: (4.546Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Extreme Convection of the Near-Equatorial Americas, Africa, and Adjoining Oceans as seen by TRMM

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230487
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorZuluaga, Manuel D.
    contributor authorHouze, Robert A.
    date accessioned2017-06-09T17:32:09Z
    date available2017-06-09T17:32:09Z
    date copyright2015/01/01
    date issued2014
    identifier issn0027-0644
    identifier otherams-86881.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230487
    description abstracthis study documents the preferred location and diurnal cycle of extreme convective storms that occur in the tropical band containing the east Pacific Ocean, Central and South America, the Atlantic Ocean, and northern Africa. Data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar show three types of convective-stratiform structures that constitute extreme convective events: deep convective cores (DCCs), wide convective cores (WCCs), and broad stratiform regions (BSRs). Interim ECMWF Re-Analysis (ERA-Interim) data show the associated synoptic environmental factors associated with the occurrence of extreme convective features. The DCC, WCC, and BSR echoes are associated with early, middle, and late stages of convective system development, respectively, and the statistics and timing of their occurrence are related to topography and life cycle behavior of the convection. Storms containing DCC occur primarily over the Sudanian savannas of Africa and near the mountains in northern South America, being diurnally controlled. Storms with WCC manifest over land, in the same regions as the DCC, but also over oceanic regions. They appear around the clock but with maximum frequency at night. They are favored in regions of midlevel synoptic-scale low pressure systems, which over the sub-Sahara are the troughs of easterly waves. Storms containing BSR maximize over oceanic regions west of Africa and South America, where they exhibit a weak diurnal cycle with a slight midmorning maximum. Off the west coast of South America, the storms with WCC and BSR have longer lifetimes enhanced by orographic lifting over the Andes. The storms with BSR in the east Pacific Ocean often develop into tropical cyclones.
    publisherAmerican Meteorological Society
    titleExtreme Convection of the Near-Equatorial Americas, Africa, and Adjoining Oceans as seen by TRMM
    typeJournal Paper
    journal volume143
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00109.1
    journal fristpage298
    journal lastpage316
    treeMonthly Weather Review:;2014:;volume( 143 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian