YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Diabatically Generated Potential Vorticity Structure near the Extratropical Tropopause in Three Simulated Extratropical Cyclones

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 006::page 2337
    Author:
    Chagnon, Jeffrey M.
    ,
    Gray, Suzanne L.
    DOI: 10.1175/MWR-D-14-00092.1
    Publisher: American Meteorological Society
    Abstract: he structure of near-tropopause potential vorticity (PV) acts as a primary control on the evolution of extratropical cyclones. Diabatic processes such as the latent heating found in ascending moist warm conveyor belts modify PV. A dipole in diabatically generated PV (hereafter diabatic PV) straddling the extratropical tropopause, with the positive pole above the negative pole, was diagnosed in a recently published analysis of a simulated extratropical cyclone. This PV dipole has the potential to significantly modify the propagation of Rossby waves and the growth of baroclinically unstable waves. This previous analysis was based on a single case study simulated with 12-km horizontal grid spacing and parameterized convection. Here the dipole is investigated in three additional cold-season extratropical cyclones simulated in both convection-parameterizing and convection-permitting model configurations. A diabatic PV dipole across the extratropical tropopause is diagnosed in all three cases. The amplitude of the dipole saturates approximately 36 h from the time diabatic PV is accumulated. The node elevation of the dipole varies between 2 and 4 PVU (1 PVU = 106 K kg?1 m2 s?1) in the three cases, and the amplitude of the system-averaged dipole varies between 0.2 and 0.4 PVU. The amplitude of the negative pole is similar in the convection-parameterizing and convection-permitting simulations. The positive pole, which is generated by longwave radiative cooling, is weak in the convection-permitting simulations due to the small domain size, which limits the accumulation of diabatic tendencies within the interior of the domain. The possible correspondence between the diabatic PV dipole and the extratropical tropopause inversion layer is discussed.
    • Download: (3.355Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Diabatically Generated Potential Vorticity Structure near the Extratropical Tropopause in Three Simulated Extratropical Cyclones

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230474
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorChagnon, Jeffrey M.
    contributor authorGray, Suzanne L.
    date accessioned2017-06-09T17:32:07Z
    date available2017-06-09T17:32:07Z
    date copyright2015/06/01
    date issued2015
    identifier issn0027-0644
    identifier otherams-86869.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230474
    description abstracthe structure of near-tropopause potential vorticity (PV) acts as a primary control on the evolution of extratropical cyclones. Diabatic processes such as the latent heating found in ascending moist warm conveyor belts modify PV. A dipole in diabatically generated PV (hereafter diabatic PV) straddling the extratropical tropopause, with the positive pole above the negative pole, was diagnosed in a recently published analysis of a simulated extratropical cyclone. This PV dipole has the potential to significantly modify the propagation of Rossby waves and the growth of baroclinically unstable waves. This previous analysis was based on a single case study simulated with 12-km horizontal grid spacing and parameterized convection. Here the dipole is investigated in three additional cold-season extratropical cyclones simulated in both convection-parameterizing and convection-permitting model configurations. A diabatic PV dipole across the extratropical tropopause is diagnosed in all three cases. The amplitude of the dipole saturates approximately 36 h from the time diabatic PV is accumulated. The node elevation of the dipole varies between 2 and 4 PVU (1 PVU = 106 K kg?1 m2 s?1) in the three cases, and the amplitude of the system-averaged dipole varies between 0.2 and 0.4 PVU. The amplitude of the negative pole is similar in the convection-parameterizing and convection-permitting simulations. The positive pole, which is generated by longwave radiative cooling, is weak in the convection-permitting simulations due to the small domain size, which limits the accumulation of diabatic tendencies within the interior of the domain. The possible correspondence between the diabatic PV dipole and the extratropical tropopause inversion layer is discussed.
    publisherAmerican Meteorological Society
    titleA Diabatically Generated Potential Vorticity Structure near the Extratropical Tropopause in Three Simulated Extratropical Cyclones
    typeJournal Paper
    journal volume143
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00092.1
    journal fristpage2337
    journal lastpage2347
    treeMonthly Weather Review:;2015:;volume( 143 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian