YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameter Estimation Using Ensemble-Based Data Assimilation in the Presence of Model Error

    Source: Monthly Weather Review:;2014:;volume( 143 ):;issue: 005::page 1568
    Author:
    Ruiz, Juan
    ,
    Pulido, Manuel
    DOI: 10.1175/MWR-D-14-00017.1
    Publisher: American Meteorological Society
    Abstract: his work explores the potential of online parameter estimation as a technique for model error treatment under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric general circulation model, and an observing system simulation experiment (OSSE) approach. Model error is introduced in the imperfect model scenario by changing the value of the parameters associated with different schemes. The parameters of the moist convection scheme are the only ones to be estimated in the data assimilation system. In this work, parameter estimation is compared and combined with techniques that account for the lack of ensemble spread and for the systematic model error. The OSSEs show that when parameter estimation is combined with model error treatment techniques, multiplicative and additive inflation or a bias correction technique, parameter estimation produces a further improvement of analysis quality and medium-range forecast skill with respect to the OSSEs with model error treatment techniques without parameter estimation. The improvement produced by parameter estimation is mainly a consequence of the optimization of the parameter values. The estimated parameters do not converge to the value used to generate the observations in the imperfect model scenario; however, the analysis error is reduced and the forecast skill is improved.
    • Download: (1.235Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameter Estimation Using Ensemble-Based Data Assimilation in the Presence of Model Error

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230425
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorRuiz, Juan
    contributor authorPulido, Manuel
    date accessioned2017-06-09T17:31:56Z
    date available2017-06-09T17:31:56Z
    date copyright2015/05/01
    date issued2014
    identifier issn0027-0644
    identifier otherams-86824.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230425
    description abstracthis work explores the potential of online parameter estimation as a technique for model error treatment under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric general circulation model, and an observing system simulation experiment (OSSE) approach. Model error is introduced in the imperfect model scenario by changing the value of the parameters associated with different schemes. The parameters of the moist convection scheme are the only ones to be estimated in the data assimilation system. In this work, parameter estimation is compared and combined with techniques that account for the lack of ensemble spread and for the systematic model error. The OSSEs show that when parameter estimation is combined with model error treatment techniques, multiplicative and additive inflation or a bias correction technique, parameter estimation produces a further improvement of analysis quality and medium-range forecast skill with respect to the OSSEs with model error treatment techniques without parameter estimation. The improvement produced by parameter estimation is mainly a consequence of the optimization of the parameter values. The estimated parameters do not converge to the value used to generate the observations in the imperfect model scenario; however, the analysis error is reduced and the forecast skill is improved.
    publisherAmerican Meteorological Society
    titleParameter Estimation Using Ensemble-Based Data Assimilation in the Presence of Model Error
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00017.1
    journal fristpage1568
    journal lastpage1582
    treeMonthly Weather Review:;2014:;volume( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian