YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Relative Roles of the Ocean and Atmosphere as Revealed by Buoy Air–Sea Observations in Hurricanes

    Source: Monthly Weather Review:;2014:;volume( 143 ):;issue: 003::page 904
    Author:
    Cione, Joseph J.
    DOI: 10.1175/MWR-D-13-00380.1
    Publisher: American Meteorological Society
    Abstract: esults from this multihurricane study suggest that the criticality of the oft-cited 26°C hurricane threshold linked to hurricane maintenance may be more closely associated with atmospheric thermodynamic conditions within the inner core than previously believed. In all cases, a positive sea?air contrast was observed within the storm inner core (i.e., surface ocean temperature greater than surface air temperature), despite the fact that 6% of the hurricanes exhibited sea surface temperatures (SSTs) less than the 26°C. For the storms sampled in this study, inner-core surface dewpoint temperatures never exceeded 26.5°C. This finding may provide an alternate explanation as to the criticality of the 26°C threshold since SSTs above 26°C would, in almost all instances, be associated with a positive enthalpy flux condition. Analyses from this study also illustrate that high wind SSTs fluctuate as a function of storm latitude, while inner-core near-surface dewpoint temperatures are much less sensitive to this parameter. As a result, and assuming all other factors to be equal, low-latitude hurricanes would, on average, be expected to experience surface moisture fluxes ~1/3 greater than storms located farther to the north. For systems sampled within the deep tropics, inner-core SST was found to fluctuate much less than surface dewpoint temperature, suggesting that the atmosphere, not the ocean, is more likely to influence the key thermodynamic parameter controlling surface moisture flux for this subset of hurricanes.
    • Download: (1.212Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Relative Roles of the Ocean and Atmosphere as Revealed by Buoy Air–Sea Observations in Hurricanes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230393
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorCione, Joseph J.
    date accessioned2017-06-09T17:31:50Z
    date available2017-06-09T17:31:50Z
    date copyright2015/03/01
    date issued2014
    identifier issn0027-0644
    identifier otherams-86796.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230393
    description abstractesults from this multihurricane study suggest that the criticality of the oft-cited 26°C hurricane threshold linked to hurricane maintenance may be more closely associated with atmospheric thermodynamic conditions within the inner core than previously believed. In all cases, a positive sea?air contrast was observed within the storm inner core (i.e., surface ocean temperature greater than surface air temperature), despite the fact that 6% of the hurricanes exhibited sea surface temperatures (SSTs) less than the 26°C. For the storms sampled in this study, inner-core surface dewpoint temperatures never exceeded 26.5°C. This finding may provide an alternate explanation as to the criticality of the 26°C threshold since SSTs above 26°C would, in almost all instances, be associated with a positive enthalpy flux condition. Analyses from this study also illustrate that high wind SSTs fluctuate as a function of storm latitude, while inner-core near-surface dewpoint temperatures are much less sensitive to this parameter. As a result, and assuming all other factors to be equal, low-latitude hurricanes would, on average, be expected to experience surface moisture fluxes ~1/3 greater than storms located farther to the north. For systems sampled within the deep tropics, inner-core SST was found to fluctuate much less than surface dewpoint temperature, suggesting that the atmosphere, not the ocean, is more likely to influence the key thermodynamic parameter controlling surface moisture flux for this subset of hurricanes.
    publisherAmerican Meteorological Society
    titleThe Relative Roles of the Ocean and Atmosphere as Revealed by Buoy Air–Sea Observations in Hurricanes
    typeJournal Paper
    journal volume143
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-13-00380.1
    journal fristpage904
    journal lastpage913
    treeMonthly Weather Review:;2014:;volume( 143 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian