YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Kinematic and Precipitation Characteristics of Convective Systems Observed by Airborne Doppler Radar during the Life Cycle of a Madden–Julian Oscillation in the Indian Ocean

    Source: Monthly Weather Review:;2013:;volume( 142 ):;issue: 004::page 1385
    Author:
    Guy, Nick
    ,
    Jorgensen, David P.
    DOI: 10.1175/MWR-D-13-00252.1
    Publisher: American Meteorological Society
    Abstract: his study presents characteristics of convective systems observed during the Dynamics of the Madden?Julian oscillation (DYNAMO) experiment by the instrumented NOAA WP-3D aircraft. Nine separate missions, with a focus on observing mesoscale convective systems (MCSs), were executed to obtain data in the active and inactive phase of a Madden?Julian oscillation (MJO) in the Indian Ocean. Doppler radar and in situ thermodynamic data are used to contrast the convective system characteristics during the evolution of the MJO. Isolated convection was prominent during the inactive phases of the MJO, with deepening convection during the onset of the MJO. During the MJO peak, convection and stratiform precipitation became more widespread. A larger population of deep convective elements led to a larger area of stratiform precipitation. As the MJO decayed, convective system top heights increased, though the number of convective systems decreased, eventually transitioning back to isolated convection. A distinct shift of echo top heights and contoured frequency-by-altitude diagram distributions of radar reflectivity and vertical wind speed indicated that some mesoscale characteristics were coupled to the MJO phase. Convective characteristics in the climatological initiation region (Indian Ocean) were also apparent. Comparison to results from the Tropical Ocean and Global Atmosphere Coupled Ocean?Atmosphere Response Experiment (TOGA COARE) in the western Pacific indicated that DYNAMO MCSs were linearly organized more parallel to the low-level shear and without strong cold pools than in TOGA COARE. Three-dimensional MCS airflow also showed a different dynamical structure, with a lack of the descending rear inflow present in shear perpendicularly organized TOGA COARE MCSs. Weaker, but deeper updrafts were observed in DYNAMO.
    • Download: (5.149Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Kinematic and Precipitation Characteristics of Convective Systems Observed by Airborne Doppler Radar during the Life Cycle of a Madden–Julian Oscillation in the Indian Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230294
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorGuy, Nick
    contributor authorJorgensen, David P.
    date accessioned2017-06-09T17:31:30Z
    date available2017-06-09T17:31:30Z
    date copyright2014/04/01
    date issued2013
    identifier issn0027-0644
    identifier otherams-86706.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230294
    description abstracthis study presents characteristics of convective systems observed during the Dynamics of the Madden?Julian oscillation (DYNAMO) experiment by the instrumented NOAA WP-3D aircraft. Nine separate missions, with a focus on observing mesoscale convective systems (MCSs), were executed to obtain data in the active and inactive phase of a Madden?Julian oscillation (MJO) in the Indian Ocean. Doppler radar and in situ thermodynamic data are used to contrast the convective system characteristics during the evolution of the MJO. Isolated convection was prominent during the inactive phases of the MJO, with deepening convection during the onset of the MJO. During the MJO peak, convection and stratiform precipitation became more widespread. A larger population of deep convective elements led to a larger area of stratiform precipitation. As the MJO decayed, convective system top heights increased, though the number of convective systems decreased, eventually transitioning back to isolated convection. A distinct shift of echo top heights and contoured frequency-by-altitude diagram distributions of radar reflectivity and vertical wind speed indicated that some mesoscale characteristics were coupled to the MJO phase. Convective characteristics in the climatological initiation region (Indian Ocean) were also apparent. Comparison to results from the Tropical Ocean and Global Atmosphere Coupled Ocean?Atmosphere Response Experiment (TOGA COARE) in the western Pacific indicated that DYNAMO MCSs were linearly organized more parallel to the low-level shear and without strong cold pools than in TOGA COARE. Three-dimensional MCS airflow also showed a different dynamical structure, with a lack of the descending rear inflow present in shear perpendicularly organized TOGA COARE MCSs. Weaker, but deeper updrafts were observed in DYNAMO.
    publisherAmerican Meteorological Society
    titleKinematic and Precipitation Characteristics of Convective Systems Observed by Airborne Doppler Radar during the Life Cycle of a Madden–Julian Oscillation in the Indian Ocean
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-13-00252.1
    journal fristpage1385
    journal lastpage1402
    treeMonthly Weather Review:;2013:;volume( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian