YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Potential for Self-Organizing Maps to Identify Model Error Structures

    Source: Monthly Weather Review:;2013:;volume( 142 ):;issue: 004::page 1688
    Author:
    Kolczynski, Walter C.
    ,
    Hacker, Joshua P.
    DOI: 10.1175/MWR-D-13-00189.1
    Publisher: American Meteorological Society
    Abstract: n important aspect of numerical weather model improvement is the identification of deficient areas of the model, particularly deficiencies that are flow dependent or otherwise vary in time or space. Here the authors introduce the use of self-organizing maps (SOMs) and analysis increments from data assimilation to identify model deficiencies. Systematic increments reveal time- and space-dependent systematic errors, while SOMs provide a method for categorizing forecasts or increment patterns. The SOMs can be either used for direct analysis or used to produce composites of other fields. This study uses the forecasts and increments of 2-m temperature and dry column mass perturbation ? over a 4-week period to demonstrate the potential of this technique. Results demonstrate the potential of this technique for identifying spatially varying systematic model errors.
    • Download: (1.948Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Potential for Self-Organizing Maps to Identify Model Error Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230248
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorKolczynski, Walter C.
    contributor authorHacker, Joshua P.
    date accessioned2017-06-09T17:31:19Z
    date available2017-06-09T17:31:19Z
    date copyright2014/04/01
    date issued2013
    identifier issn0027-0644
    identifier otherams-86665.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230248
    description abstractn important aspect of numerical weather model improvement is the identification of deficient areas of the model, particularly deficiencies that are flow dependent or otherwise vary in time or space. Here the authors introduce the use of self-organizing maps (SOMs) and analysis increments from data assimilation to identify model deficiencies. Systematic increments reveal time- and space-dependent systematic errors, while SOMs provide a method for categorizing forecasts or increment patterns. The SOMs can be either used for direct analysis or used to produce composites of other fields. This study uses the forecasts and increments of 2-m temperature and dry column mass perturbation ? over a 4-week period to demonstrate the potential of this technique. Results demonstrate the potential of this technique for identifying spatially varying systematic model errors.
    publisherAmerican Meteorological Society
    titleThe Potential for Self-Organizing Maps to Identify Model Error Structures
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-13-00189.1
    journal fristpage1688
    journal lastpage1696
    treeMonthly Weather Review:;2013:;volume( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian