YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Hybrid Local Ensemble Transform Kalman Filter

    Source: Monthly Weather Review:;2013:;volume( 142 ):;issue: 006::page 2139
    Author:
    Penny, Stephen G.
    DOI: 10.1175/MWR-D-13-00131.1
    Publisher: American Meteorological Society
    Abstract: ybrid data assimilation methods combine elements of ensemble Kalman filters (EnKF) and variational methods. While most approaches have focused on augmenting an operational variational system with dynamic error covariance information from an ensemble, this study takes the opposite perspective of augmenting an operational EnKF with information from a simple 3D variational data assimilation (3D-Var) method. A class of hybrid methods is introduced that combines the gain matrices of the ensemble and variational methods, rather than linearly combining the respective background error covariances. A hybrid local ensemble transform Kalman filter (Hybrid-LETKF) is presented in two forms: 1) a traditionally motivated Hybrid/Covariance-LETKF that combines the background error covariance matrices of LETKF and 3D-Var, and 2) a simple-to-implement algorithm called the Hybrid/Mean-LETKF that falls into the new class of hybrid gain methods. Both forms improve analysis errors when using small ensemble sizes and low observation coverage versus either LETKF or 3D-Var used alone. The results imply that for small ensemble sizes, allowing a solution to be found outside of the space spanned by ensemble members provides robustness in both hybrid methods compared to LETKF alone. Finally, the simplicity of the Hybrid/Mean-LETKF design implies that this algorithm can be applied operationally while requiring only minor modifications to an existing operational 3D-Var system.
    • Download: (2.084Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Hybrid Local Ensemble Transform Kalman Filter

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230207
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorPenny, Stephen G.
    date accessioned2017-06-09T17:31:12Z
    date available2017-06-09T17:31:12Z
    date copyright2014/06/01
    date issued2013
    identifier issn0027-0644
    identifier otherams-86628.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230207
    description abstractybrid data assimilation methods combine elements of ensemble Kalman filters (EnKF) and variational methods. While most approaches have focused on augmenting an operational variational system with dynamic error covariance information from an ensemble, this study takes the opposite perspective of augmenting an operational EnKF with information from a simple 3D variational data assimilation (3D-Var) method. A class of hybrid methods is introduced that combines the gain matrices of the ensemble and variational methods, rather than linearly combining the respective background error covariances. A hybrid local ensemble transform Kalman filter (Hybrid-LETKF) is presented in two forms: 1) a traditionally motivated Hybrid/Covariance-LETKF that combines the background error covariance matrices of LETKF and 3D-Var, and 2) a simple-to-implement algorithm called the Hybrid/Mean-LETKF that falls into the new class of hybrid gain methods. Both forms improve analysis errors when using small ensemble sizes and low observation coverage versus either LETKF or 3D-Var used alone. The results imply that for small ensemble sizes, allowing a solution to be found outside of the space spanned by ensemble members provides robustness in both hybrid methods compared to LETKF alone. Finally, the simplicity of the Hybrid/Mean-LETKF design implies that this algorithm can be applied operationally while requiring only minor modifications to an existing operational 3D-Var system.
    publisherAmerican Meteorological Society
    titleThe Hybrid Local Ensemble Transform Kalman Filter
    typeJournal Paper
    journal volume142
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-13-00131.1
    journal fristpage2139
    journal lastpage2149
    treeMonthly Weather Review:;2013:;volume( 142 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian