YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Drag Parameter Estimation Using Gradients and Hessian from a Polynomial Chaos Model Surrogate

    Source: Monthly Weather Review:;2013:;volume( 142 ):;issue: 002::page 933
    Author:
    Sraj, Ihab
    ,
    Iskandarani, Mohamed
    ,
    Thacker, W. Carlisle
    ,
    Srinivasan, Ashwanth
    ,
    Knio, Omar M.
    DOI: 10.1175/MWR-D-13-00087.1
    Publisher: American Meteorological Society
    Abstract: variational inverse problem is solved using polynomial chaos expansions to infer several critical variables in the Hybrid Coordinate Ocean Model?s (HYCOM?s) wind drag parameterization. This alternative to the Bayesian inference approach in Sraj et al. avoids the complications of constructing the full posterior with Markov chain Monte Carlo sampling. It focuses instead on identifying the center and spread of the posterior distribution. The present approach leverages the polynomial chaos series to estimate, at very little extra cost, the gradients and Hessian of the cost function during minimization. The Hessian?s inverse yields an estimate of the uncertainty in the solution when the latter?s probability density is approximately Gaussian. The main computational burden is an ensemble of realizations to build the polynomial chaos expansion; no adjoint code or additional forward model runs are needed once the series is available. The ensuing optimal parameters are compared to those obtained in Sraj et al. where the full posterior distribution was constructed. The similarities and differences between the new methodology and a traditional adjoint-based calculation are discussed.
    • Download: (774.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Drag Parameter Estimation Using Gradients and Hessian from a Polynomial Chaos Model Surrogate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230184
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSraj, Ihab
    contributor authorIskandarani, Mohamed
    contributor authorThacker, W. Carlisle
    contributor authorSrinivasan, Ashwanth
    contributor authorKnio, Omar M.
    date accessioned2017-06-09T17:31:08Z
    date available2017-06-09T17:31:08Z
    date copyright2014/02/01
    date issued2013
    identifier issn0027-0644
    identifier otherams-86607.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230184
    description abstractvariational inverse problem is solved using polynomial chaos expansions to infer several critical variables in the Hybrid Coordinate Ocean Model?s (HYCOM?s) wind drag parameterization. This alternative to the Bayesian inference approach in Sraj et al. avoids the complications of constructing the full posterior with Markov chain Monte Carlo sampling. It focuses instead on identifying the center and spread of the posterior distribution. The present approach leverages the polynomial chaos series to estimate, at very little extra cost, the gradients and Hessian of the cost function during minimization. The Hessian?s inverse yields an estimate of the uncertainty in the solution when the latter?s probability density is approximately Gaussian. The main computational burden is an ensemble of realizations to build the polynomial chaos expansion; no adjoint code or additional forward model runs are needed once the series is available. The ensuing optimal parameters are compared to those obtained in Sraj et al. where the full posterior distribution was constructed. The similarities and differences between the new methodology and a traditional adjoint-based calculation are discussed.
    publisherAmerican Meteorological Society
    titleDrag Parameter Estimation Using Gradients and Hessian from a Polynomial Chaos Model Surrogate
    typeJournal Paper
    journal volume142
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-13-00087.1
    journal fristpage933
    journal lastpage941
    treeMonthly Weather Review:;2013:;volume( 142 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian