YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Empirical Examination of the Factors Regulating Thunderstorm Initiation

    Source: Monthly Weather Review:;2013:;volume( 142 ):;issue: 001::page 240
    Author:
    Lock, Noah A.
    ,
    Houston, Adam L.
    DOI: 10.1175/MWR-D-13-00082.1
    Publisher: American Meteorological Society
    Abstract: nitiation is the part of the convective life cycle that is currently least understood and least well forecast. The inability to properly forecast the timing and/or location of deep convection initiation degrades forecast skill, especially during the warm season. To gain insight into what atmospheric parameters distinguish areas where storms initiate from areas where they do not initiate, over 55 000 thunderstorm initiation points over the central United States from 2005 to 2007 are found and a number of thermodynamic and kinematic parameters are computed from 20-km Rapid Update Cycle (RUC)-2 data. In addition to the initiation points, data are also collected at nearby locations where thunderstorms did not initiate (null points) for comparison. Thunderstorm identification and tracking are done using several tools within the Warning Decision Support Services?Integrated Information (WDSS-II) package and a thunderstorm tracking algorithm called Thunderstorm Observation by Radar (ThOR). The parameters being examined are intended to represent the four main factors governing the behavior of convection: buoyancy, dilution, lift, and inhibition. Statistical analysis of the data shows that there is no threshold of any single parameter that is consistently able to discriminate between initiation and noninitiation. However, case-by-case comparison of the values showed that lift is most often the factor that distinguishes the thunderstorm initiation environment from other areas.
    • Download: (2.839Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Empirical Examination of the Factors Regulating Thunderstorm Initiation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230181
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorLock, Noah A.
    contributor authorHouston, Adam L.
    date accessioned2017-06-09T17:31:07Z
    date available2017-06-09T17:31:07Z
    date copyright2014/01/01
    date issued2013
    identifier issn0027-0644
    identifier otherams-86604.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230181
    description abstractnitiation is the part of the convective life cycle that is currently least understood and least well forecast. The inability to properly forecast the timing and/or location of deep convection initiation degrades forecast skill, especially during the warm season. To gain insight into what atmospheric parameters distinguish areas where storms initiate from areas where they do not initiate, over 55 000 thunderstorm initiation points over the central United States from 2005 to 2007 are found and a number of thermodynamic and kinematic parameters are computed from 20-km Rapid Update Cycle (RUC)-2 data. In addition to the initiation points, data are also collected at nearby locations where thunderstorms did not initiate (null points) for comparison. Thunderstorm identification and tracking are done using several tools within the Warning Decision Support Services?Integrated Information (WDSS-II) package and a thunderstorm tracking algorithm called Thunderstorm Observation by Radar (ThOR). The parameters being examined are intended to represent the four main factors governing the behavior of convection: buoyancy, dilution, lift, and inhibition. Statistical analysis of the data shows that there is no threshold of any single parameter that is consistently able to discriminate between initiation and noninitiation. However, case-by-case comparison of the values showed that lift is most often the factor that distinguishes the thunderstorm initiation environment from other areas.
    publisherAmerican Meteorological Society
    titleEmpirical Examination of the Factors Regulating Thunderstorm Initiation
    typeJournal Paper
    journal volume142
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-13-00082.1
    journal fristpage240
    journal lastpage258
    treeMonthly Weather Review:;2013:;volume( 142 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian