YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Study of Typhoon Megi (2010). Part I: Rapid Intensification

    Source: Monthly Weather Review:;2013:;volume( 142 ):;issue: 001::page 29
    Author:
    Wang, Hui
    ,
    Wang, Yuqing
    DOI: 10.1175/MWR-D-13-00070.1
    Publisher: American Meteorological Society
    Abstract: yphoon Megi (15W) was the most powerful and longest-lived tropical cyclone (TC) over the western North Pacific during 2010. While it shared many common features of TCs that crossed Luzon Island in the northern Philippines, Megi experienced unique intensity and structural changes, which were reproduced reasonably well in a simulation using the Advanced Research Weather Research and Forecasting Model (ARW-WRF) with both dynamical initialization and large-scale spectral nudging. In this paper processes responsible for the rapid intensification (RI) of the modeled Megi before it made landfall over Luzon Island were analyzed. The results show that Megi experienced RI over the warm ocean with high ocean heat content and decreasing environmental vertical shear. The onset of RI was triggered by convective bursts (CBs), which penetrate into the upper troposphere, leading to the upper-tropospheric warming and the formation of the upper-level warm core. In turn, CBs with their roots inside of the eyewall in the boundary layer were buoyantly triggered/supported by slantwise convective available potential energy (SCAPE) accumulated in the eye region. During RI, convective area coverage in the inner-core region was increasing while the updraft velocity in the upper troposphere and the number of CBs were both decreasing. Different from the majority of TCs that experience RI with a significant eyewall contraction, the simulated Megi, as the observed, rapidly intensified without an eyewall contraction. This is attributed to diabatic heating in active spiral rainbands, a process previously proposed to explain the inner-core size increase, enhanced by the interaction of the typhoon vortex with a low-level synoptic depression in which Megi was embedded.
    • Download: (4.348Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Study of Typhoon Megi (2010). Part I: Rapid Intensification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230171
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorWang, Hui
    contributor authorWang, Yuqing
    date accessioned2017-06-09T17:31:06Z
    date available2017-06-09T17:31:06Z
    date copyright2014/01/01
    date issued2013
    identifier issn0027-0644
    identifier otherams-86596.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230171
    description abstractyphoon Megi (15W) was the most powerful and longest-lived tropical cyclone (TC) over the western North Pacific during 2010. While it shared many common features of TCs that crossed Luzon Island in the northern Philippines, Megi experienced unique intensity and structural changes, which were reproduced reasonably well in a simulation using the Advanced Research Weather Research and Forecasting Model (ARW-WRF) with both dynamical initialization and large-scale spectral nudging. In this paper processes responsible for the rapid intensification (RI) of the modeled Megi before it made landfall over Luzon Island were analyzed. The results show that Megi experienced RI over the warm ocean with high ocean heat content and decreasing environmental vertical shear. The onset of RI was triggered by convective bursts (CBs), which penetrate into the upper troposphere, leading to the upper-tropospheric warming and the formation of the upper-level warm core. In turn, CBs with their roots inside of the eyewall in the boundary layer were buoyantly triggered/supported by slantwise convective available potential energy (SCAPE) accumulated in the eye region. During RI, convective area coverage in the inner-core region was increasing while the updraft velocity in the upper troposphere and the number of CBs were both decreasing. Different from the majority of TCs that experience RI with a significant eyewall contraction, the simulated Megi, as the observed, rapidly intensified without an eyewall contraction. This is attributed to diabatic heating in active spiral rainbands, a process previously proposed to explain the inner-core size increase, enhanced by the interaction of the typhoon vortex with a low-level synoptic depression in which Megi was embedded.
    publisherAmerican Meteorological Society
    titleA Numerical Study of Typhoon Megi (2010). Part I: Rapid Intensification
    typeJournal Paper
    journal volume142
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-13-00070.1
    journal fristpage29
    journal lastpage48
    treeMonthly Weather Review:;2013:;volume( 142 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian