YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mixed-Resolution Ensemble Data Assimilation

    Source: Monthly Weather Review:;2013:;volume( 141 ):;issue: 009::page 3007
    Author:
    Rainwater, Sabrina
    ,
    Hunt, Brian
    DOI: 10.1175/MWR-D-12-00234.1
    Publisher: American Meteorological Society
    Abstract: nsemble Kalman filters perform data assimilation by forming a background covariance matrix from an ensemble forecast. Most of the literature on ensemble Kalman filters assumes that all ensemble members come from the same model. This article presents and tests a modified local ensemble transform Kalman filter (LETKF) that takes its background covariance from a combination of a high-resolution ensemble and a low-resolution ensemble. The computational time and the accuracy of this mixed-resolution LETKF are explored and compared to the standard LETKF on a high-resolution ensemble, using simulated observation experiments with the Lorenz models II and III (more complex versions of the Lorenz-96 model). In a variety of scenarios, mixed-resolution analysis can obtain higher accuracy with similar computation time (or similar accuracy with a reduced computation time) compared to single-resolution analysis.
    • Download: (736.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mixed-Resolution Ensemble Data Assimilation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230028
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorRainwater, Sabrina
    contributor authorHunt, Brian
    date accessioned2017-06-09T17:30:36Z
    date available2017-06-09T17:30:36Z
    date copyright2013/09/01
    date issued2013
    identifier issn0027-0644
    identifier otherams-86467.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230028
    description abstractnsemble Kalman filters perform data assimilation by forming a background covariance matrix from an ensemble forecast. Most of the literature on ensemble Kalman filters assumes that all ensemble members come from the same model. This article presents and tests a modified local ensemble transform Kalman filter (LETKF) that takes its background covariance from a combination of a high-resolution ensemble and a low-resolution ensemble. The computational time and the accuracy of this mixed-resolution LETKF are explored and compared to the standard LETKF on a high-resolution ensemble, using simulated observation experiments with the Lorenz models II and III (more complex versions of the Lorenz-96 model). In a variety of scenarios, mixed-resolution analysis can obtain higher accuracy with similar computation time (or similar accuracy with a reduced computation time) compared to single-resolution analysis.
    publisherAmerican Meteorological Society
    titleMixed-Resolution Ensemble Data Assimilation
    typeJournal Paper
    journal volume141
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-12-00234.1
    journal fristpage3007
    journal lastpage3021
    treeMonthly Weather Review:;2013:;volume( 141 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian