YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bayesian Inference of Drag Parameters Using AXBT Data from Typhoon Fanapi

    Source: Monthly Weather Review:;2013:;volume( 141 ):;issue: 007::page 2347
    Author:
    Sraj, Ihab
    ,
    Iskandarani, Mohamed
    ,
    Srinivasan, Ashwanth
    ,
    Thacker, W. Carlisle
    ,
    Winokur, Justin
    ,
    Alexanderian, Alen
    ,
    Lee, Chia-Ying
    ,
    Chen, Shuyi S.
    ,
    Knio, Omar M.
    DOI: 10.1175/MWR-D-12-00228.1
    Publisher: American Meteorological Society
    Abstract: he authors introduce a three-parameter characterization of the wind speed dependence of the drag coefficient and apply a Bayesian formalism to infer values for these parameters from airborne expendable bathythermograph (AXBT) temperature data obtained during Typhoon Fanapi. One parameter is a multiplicative factor that amplifies or attenuates the drag coefficient for all wind speeds, the second is the maximum wind speed at which drag coefficient saturation occurs, and the third is the drag coefficient's rate of change with increasing wind speed after saturation. Bayesian inference provides optimal estimates of the parameters as well as a non-Gaussian probability distribution characterizing the uncertainty of these estimates. The efficiency of this approach stems from the use of adaptive polynomial expansions to build an inexpensive surrogate for the high-resolution numerical model that couples simulated winds to the oceanic temperature data, dramatically reducing the computational burden of the Markov chain Monte Carlo sampling. These results indicate that the most likely values for the drag coefficient saturation and the corresponding wind speed are about 2.3 ? 10?3 and 34 m s?1, respectively; the data were not informative regarding the drag coefficient behavior at higher wind speeds.
    • Download: (4.156Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bayesian Inference of Drag Parameters Using AXBT Data from Typhoon Fanapi

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230024
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSraj, Ihab
    contributor authorIskandarani, Mohamed
    contributor authorSrinivasan, Ashwanth
    contributor authorThacker, W. Carlisle
    contributor authorWinokur, Justin
    contributor authorAlexanderian, Alen
    contributor authorLee, Chia-Ying
    contributor authorChen, Shuyi S.
    contributor authorKnio, Omar M.
    date accessioned2017-06-09T17:30:35Z
    date available2017-06-09T17:30:35Z
    date copyright2013/07/01
    date issued2013
    identifier issn0027-0644
    identifier otherams-86463.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230024
    description abstracthe authors introduce a three-parameter characterization of the wind speed dependence of the drag coefficient and apply a Bayesian formalism to infer values for these parameters from airborne expendable bathythermograph (AXBT) temperature data obtained during Typhoon Fanapi. One parameter is a multiplicative factor that amplifies or attenuates the drag coefficient for all wind speeds, the second is the maximum wind speed at which drag coefficient saturation occurs, and the third is the drag coefficient's rate of change with increasing wind speed after saturation. Bayesian inference provides optimal estimates of the parameters as well as a non-Gaussian probability distribution characterizing the uncertainty of these estimates. The efficiency of this approach stems from the use of adaptive polynomial expansions to build an inexpensive surrogate for the high-resolution numerical model that couples simulated winds to the oceanic temperature data, dramatically reducing the computational burden of the Markov chain Monte Carlo sampling. These results indicate that the most likely values for the drag coefficient saturation and the corresponding wind speed are about 2.3 ? 10?3 and 34 m s?1, respectively; the data were not informative regarding the drag coefficient behavior at higher wind speeds.
    publisherAmerican Meteorological Society
    titleBayesian Inference of Drag Parameters Using AXBT Data from Typhoon Fanapi
    typeJournal Paper
    journal volume141
    journal issue7
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-12-00228.1
    journal fristpage2347
    journal lastpage2367
    treeMonthly Weather Review:;2013:;volume( 141 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian