YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hidden Error Variance Theory. Part II: An Instrument That Reveals Hidden Error Variance Distributions from Ensemble Forecasts and Observations

    Source: Monthly Weather Review:;2012:;volume( 141 ):;issue: 005::page 1469
    Author:
    Bishop, Craig H.
    ,
    Satterfield, Elizabeth A.
    ,
    Shanley, Kevin T.
    DOI: 10.1175/MWR-D-12-00119.1
    Publisher: American Meteorological Society
    Abstract: n Part I of this study, a model of the distribution of true error variances given an ensemble variance is shown to be defined by six parameters that also determine the optimal weights for the static and flow-dependent parts of hybrid error variance models. Two of the six parameters (the climatological mean of forecast error variance and the climatological minimum of ensemble variance) are straightforward to estimate. The other four parameters are (i) the variance of the climatological distribution of the true conditional error variances, (ii) the climatological minimum of the true conditional error variance, (iii) the relative variance of the distribution of ensemble variances given a true conditional error variance, and (iv) the parameter that defines the mean response of the ensemble variances to changes in the true error variance. These parameters are hidden because they are defined in terms of condition-dependent forecast error variance, which is unobservable if the condition is not sufficiently repeatable. Here, a set of equations that enable these hidden parameters to be accurately estimated from a long time series of (observation minus forecast, ensemble variance) data pairs is presented. The accuracy of the equations is demonstrated in tests using data from long data assimilation cycles with differing model error variance parameters as well as synthetically generated data. This newfound ability to estimate these hidden parameters provides new tools for assessing the quality of ensemble forecasts, tuning hybrid error variance models, and postprocessing ensemble forecasts.
    • Download: (1.149Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hidden Error Variance Theory. Part II: An Instrument That Reveals Hidden Error Variance Distributions from Ensemble Forecasts and Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229948
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBishop, Craig H.
    contributor authorSatterfield, Elizabeth A.
    contributor authorShanley, Kevin T.
    date accessioned2017-06-09T17:30:18Z
    date available2017-06-09T17:30:18Z
    date copyright2013/05/01
    date issued2012
    identifier issn0027-0644
    identifier otherams-86395.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229948
    description abstractn Part I of this study, a model of the distribution of true error variances given an ensemble variance is shown to be defined by six parameters that also determine the optimal weights for the static and flow-dependent parts of hybrid error variance models. Two of the six parameters (the climatological mean of forecast error variance and the climatological minimum of ensemble variance) are straightforward to estimate. The other four parameters are (i) the variance of the climatological distribution of the true conditional error variances, (ii) the climatological minimum of the true conditional error variance, (iii) the relative variance of the distribution of ensemble variances given a true conditional error variance, and (iv) the parameter that defines the mean response of the ensemble variances to changes in the true error variance. These parameters are hidden because they are defined in terms of condition-dependent forecast error variance, which is unobservable if the condition is not sufficiently repeatable. Here, a set of equations that enable these hidden parameters to be accurately estimated from a long time series of (observation minus forecast, ensemble variance) data pairs is presented. The accuracy of the equations is demonstrated in tests using data from long data assimilation cycles with differing model error variance parameters as well as synthetically generated data. This newfound ability to estimate these hidden parameters provides new tools for assessing the quality of ensemble forecasts, tuning hybrid error variance models, and postprocessing ensemble forecasts.
    publisherAmerican Meteorological Society
    titleHidden Error Variance Theory. Part II: An Instrument That Reveals Hidden Error Variance Distributions from Ensemble Forecasts and Observations
    typeJournal Paper
    journal volume141
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-12-00119.1
    journal fristpage1469
    journal lastpage1483
    treeMonthly Weather Review:;2012:;volume( 141 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian