YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Storm-Relative Observations in Tropical Cyclone Data Assimilation with an Ensemble Kalman Filter

    Source: Monthly Weather Review:;2012:;volume( 141 ):;issue: 002::page 506
    Author:
    Aksoy, Altuğ
    DOI: 10.1175/MWR-D-12-00094.1
    Publisher: American Meteorological Society
    Abstract: storm-relative data assimilation method for tropical cyclones is introduced for the ensemble Kalman filter, using the Hurricane Weather Research and Forecasting (HWRF) Ensemble Data Assimilation System (HEDAS) developed at the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory at the National Oceanic and Atmospheric Administration. The method entails translating tropical cyclone observations to storm-relative coordinates and requires the assumption of simultaneity of all observations. The observations are then randomly redistributed to assimilation cycles to achieve a more homogeneous spatial distribution. A proof-of-concept study is carried out in an observing system simulation experiment in which airborne Doppler radar radial wind observations are simulated from a higher-resolution (4.5/1.5 km) version of the same model. The results here are compared to the earth-relative version of HEDAS. When storm-relative observations are assimilated using the original HEDAS configuration, improvements are observed in the kinematic representation of the tropical cyclone vortex in analyses. The use of the storm-relative observations with a more homogeneous spatial distribution also reveals that a reduction of the covariance localization horizontal length scale by ½ to ~120 km provides the greatest incremental improvements. Potential positive impact is also seen in the slower cycle-to-cycle error growth. Spatially smoother analyses are obtained in the horizontal, and the evolution of the azimuthally averaged wind structure during short-range forecasts demonstrates better consistency with the nature run.
    • Download: (3.010Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Storm-Relative Observations in Tropical Cyclone Data Assimilation with an Ensemble Kalman Filter

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229929
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorAksoy, Altuğ
    date accessioned2017-06-09T17:30:15Z
    date available2017-06-09T17:30:15Z
    date copyright2013/02/01
    date issued2012
    identifier issn0027-0644
    identifier otherams-86378.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229929
    description abstractstorm-relative data assimilation method for tropical cyclones is introduced for the ensemble Kalman filter, using the Hurricane Weather Research and Forecasting (HWRF) Ensemble Data Assimilation System (HEDAS) developed at the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory at the National Oceanic and Atmospheric Administration. The method entails translating tropical cyclone observations to storm-relative coordinates and requires the assumption of simultaneity of all observations. The observations are then randomly redistributed to assimilation cycles to achieve a more homogeneous spatial distribution. A proof-of-concept study is carried out in an observing system simulation experiment in which airborne Doppler radar radial wind observations are simulated from a higher-resolution (4.5/1.5 km) version of the same model. The results here are compared to the earth-relative version of HEDAS. When storm-relative observations are assimilated using the original HEDAS configuration, improvements are observed in the kinematic representation of the tropical cyclone vortex in analyses. The use of the storm-relative observations with a more homogeneous spatial distribution also reveals that a reduction of the covariance localization horizontal length scale by ½ to ~120 km provides the greatest incremental improvements. Potential positive impact is also seen in the slower cycle-to-cycle error growth. Spatially smoother analyses are obtained in the horizontal, and the evolution of the azimuthally averaged wind structure during short-range forecasts demonstrates better consistency with the nature run.
    publisherAmerican Meteorological Society
    titleStorm-Relative Observations in Tropical Cyclone Data Assimilation with an Ensemble Kalman Filter
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-12-00094.1
    journal fristpage506
    journal lastpage522
    treeMonthly Weather Review:;2012:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian