YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparing the Convective Structure and Microphysics in Two Sahelian Mesoscale Convective Systems: Radar Observations and CRM Simulations

    Source: Monthly Weather Review:;2012:;volume( 141 ):;issue: 002::page 582
    Author:
    Guy, Nick
    ,
    Zeng, Xiping
    ,
    Rutledge, Steven A.
    ,
    Tao, Wei-Kuo
    DOI: 10.1175/MWR-D-12-00053.1
    Publisher: American Meteorological Society
    Abstract: wo mesoscale convective systems (MCSs) observed during the African Monsoon Multidisciplinary Analyses (AMMA) experiment are simulated using the three-dimensional (3D) Goddard Cumulus Ensemble model. This study was undertaken to determine the performance of the cloud-resolving model in representing distinct convective and microphysical differences between the two MCSs over a tropical continental location. Simulations are performed using 1-km horizontal grid spacing, a lower limit on current embedded cloud-resolving models within a global multiscale modeling framework. Simulated system convective structure and microphysics are compared to radar observations using contoured frequency-by-altitude diagrams (CFADs), calculated ice and water mass, and identified hydrometeor variables. Vertical distributions of ice hydrometeors indicate underestimation at the mid- and upper levels, partially due to the inability of the model to produce adequate system heights. The abundance of high-reflectivity values below and near the melting level in the simulation led to a broadening of the CFAD distributions. Observed vertical reflectivity profiles show that high reflectivity is present at greater heights than the simulations produced, thought to be a result of using a single-moment microphysics scheme. Relative trends in the population of simulated hydrometeors are in agreement with observations, though a secondary convective burst is not well represented. Despite these biases, the radar-observed differences between the two cases are noticeable in the simulations as well, suggesting that the model has some skill in capturing observed differences between the two MCSs.
    • Download: (2.909Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparing the Convective Structure and Microphysics in Two Sahelian Mesoscale Convective Systems: Radar Observations and CRM Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229899
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorGuy, Nick
    contributor authorZeng, Xiping
    contributor authorRutledge, Steven A.
    contributor authorTao, Wei-Kuo
    date accessioned2017-06-09T17:30:09Z
    date available2017-06-09T17:30:09Z
    date copyright2013/02/01
    date issued2012
    identifier issn0027-0644
    identifier otherams-86351.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229899
    description abstractwo mesoscale convective systems (MCSs) observed during the African Monsoon Multidisciplinary Analyses (AMMA) experiment are simulated using the three-dimensional (3D) Goddard Cumulus Ensemble model. This study was undertaken to determine the performance of the cloud-resolving model in representing distinct convective and microphysical differences between the two MCSs over a tropical continental location. Simulations are performed using 1-km horizontal grid spacing, a lower limit on current embedded cloud-resolving models within a global multiscale modeling framework. Simulated system convective structure and microphysics are compared to radar observations using contoured frequency-by-altitude diagrams (CFADs), calculated ice and water mass, and identified hydrometeor variables. Vertical distributions of ice hydrometeors indicate underestimation at the mid- and upper levels, partially due to the inability of the model to produce adequate system heights. The abundance of high-reflectivity values below and near the melting level in the simulation led to a broadening of the CFAD distributions. Observed vertical reflectivity profiles show that high reflectivity is present at greater heights than the simulations produced, thought to be a result of using a single-moment microphysics scheme. Relative trends in the population of simulated hydrometeors are in agreement with observations, though a secondary convective burst is not well represented. Despite these biases, the radar-observed differences between the two cases are noticeable in the simulations as well, suggesting that the model has some skill in capturing observed differences between the two MCSs.
    publisherAmerican Meteorological Society
    titleComparing the Convective Structure and Microphysics in Two Sahelian Mesoscale Convective Systems: Radar Observations and CRM Simulations
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-12-00053.1
    journal fristpage582
    journal lastpage601
    treeMonthly Weather Review:;2012:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian