YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of Simulated Climate to Two Atmospheric Models: Interpretation of Differences between Dry Models and Moist Models

    Source: Monthly Weather Review:;2012:;volume( 141 ):;issue: 005::page 1558
    Author:
    Zhang, He
    ,
    Zhang, Minghua
    ,
    Zeng, Qing-cun
    DOI: 10.1175/MWR-D-11-00367.1
    Publisher: American Meteorological Society
    Abstract: he dynamical core of the Institute of Atmospheric Physics of the Chinese Academy of Sciences Atmospheric General Circulation Model (IAP AGCM) and the Eulerian spectral transform dynamical core of the Community Atmosphere Model, version 3.1 (CAM3.1), developed at the National Center for Atmospheric Research (NCAR) are used to study the sensitivity of simulated climate. The authors report that when the dynamical cores are used with the same CAM3.1 physical parameterizations of comparable resolutions, the model with the IAP dynamical core simulated a colder troposphere than that from the CAM3.1 core, reducing the CAM3.1 warm bias in the tropical and midlatitude troposphere. However, when the two dynamical cores are used in the idealized Held?Suarez tests without moisture physics, the IAP AGCM core simulated a warmer troposphere than that in CAM3.1. The causes of the differences in the full models and in the dry models are then investigated.The authors show that the IAP dynamical core simulated weaker eddies in both the full physics and the dry models than those in the CAM due to different numerical approximations. In the dry IAP model, the weaker eddies cause smaller heat loss from poleward dynamical transport and thus warmer troposphere in the tropics and midlatitudes. When moist physics is included, however, weaker eddies also lead to weaker transport of water vapor and reduction of high clouds in the IAP model, which then causes a colder troposphere due to reduced greenhouse warming of these clouds. These results show how interactive physical processes can change the effect of a dynamical core on climate simulations between two models.
    • Download: (3.803Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of Simulated Climate to Two Atmospheric Models: Interpretation of Differences between Dry Models and Moist Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229859
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorZhang, He
    contributor authorZhang, Minghua
    contributor authorZeng, Qing-cun
    date accessioned2017-06-09T17:30:01Z
    date available2017-06-09T17:30:01Z
    date copyright2013/05/01
    date issued2012
    identifier issn0027-0644
    identifier otherams-86314.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229859
    description abstracthe dynamical core of the Institute of Atmospheric Physics of the Chinese Academy of Sciences Atmospheric General Circulation Model (IAP AGCM) and the Eulerian spectral transform dynamical core of the Community Atmosphere Model, version 3.1 (CAM3.1), developed at the National Center for Atmospheric Research (NCAR) are used to study the sensitivity of simulated climate. The authors report that when the dynamical cores are used with the same CAM3.1 physical parameterizations of comparable resolutions, the model with the IAP dynamical core simulated a colder troposphere than that from the CAM3.1 core, reducing the CAM3.1 warm bias in the tropical and midlatitude troposphere. However, when the two dynamical cores are used in the idealized Held?Suarez tests without moisture physics, the IAP AGCM core simulated a warmer troposphere than that in CAM3.1. The causes of the differences in the full models and in the dry models are then investigated.The authors show that the IAP dynamical core simulated weaker eddies in both the full physics and the dry models than those in the CAM due to different numerical approximations. In the dry IAP model, the weaker eddies cause smaller heat loss from poleward dynamical transport and thus warmer troposphere in the tropics and midlatitudes. When moist physics is included, however, weaker eddies also lead to weaker transport of water vapor and reduction of high clouds in the IAP model, which then causes a colder troposphere due to reduced greenhouse warming of these clouds. These results show how interactive physical processes can change the effect of a dynamical core on climate simulations between two models.
    publisherAmerican Meteorological Society
    titleSensitivity of Simulated Climate to Two Atmospheric Models: Interpretation of Differences between Dry Models and Moist Models
    typeJournal Paper
    journal volume141
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-11-00367.1
    journal fristpage1558
    journal lastpage1576
    treeMonthly Weather Review:;2012:;volume( 141 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian