YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Verification and Calibration of Neighborhood and Object-Based Probabilistic Precipitation Forecasts from a Multimodel Convection-Allowing Ensemble

    Source: Monthly Weather Review:;2012:;volume( 140 ):;issue: 009::page 3054
    Author:
    Johnson, Aaron
    ,
    Wang, Xuguang
    DOI: 10.1175/MWR-D-11-00356.1
    Publisher: American Meteorological Society
    Abstract: eighborhood and object-based probabilistic precipitation forecasts from a convection-allowing ensemble are verified and calibrated. Calibration methods include logistic regression, one- and two-parameter reliability-based calibration, and cumulative distribution function (CDF)-based bias adjustment. Newly proposed object-based probabilistic forecasts for the occurrence of a forecast object are derived from the percentage of ensemble members with a matching object. Verification and calibration of single- and multimodel subensembles are performed to explore the effect of using multiple models.The uncalibrated neighborhood-based probabilistic forecasts have skill minima during the afternoon convective maximum. Calibration generally improves the skill, especially during the skill minima, resulting in positive skill. In general all calibration methods perform similarly, with a slight advantage of logistic regression (one-parameter reliability based) calibration for 1-h (6 h) accumulations.The uncalibrated object-based probabilistic forecasts are, in general, less skillful than the uncalibrated neighborhood-based probabilistic forecasts. Object-based calibration also results in positive skill at all lead times. For object-based calibration the skill is significantly different among the calibration methods, with the logistic regression performing the best and CDF-based bias adjustment performing the worst.For both the neighborhood and object-based probabilistic forecasts, the impact of using 10 or 25 days of training data for calibration is generally small and is most significant for the two-parameter reliability-based method. An uncalibrated Advanced Research Weather Research and Forecasting Model (ARW-WRF) subensemble is significantly more skillful than an uncalibrated WRF Nonhydrostatic Mesoscale Model (NMM) subensemble. The difference is reduced by calibration. The multimodel subensemble only shows an advantage for the neighborhood-based forecasts beyond 1-day lead time and shows no advantage for the object-based forecasts.
    • Download: (2.529Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Verification and Calibration of Neighborhood and Object-Based Probabilistic Precipitation Forecasts from a Multimodel Convection-Allowing Ensemble

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229854
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorJohnson, Aaron
    contributor authorWang, Xuguang
    date accessioned2017-06-09T17:30:00Z
    date available2017-06-09T17:30:00Z
    date copyright2012/09/01
    date issued2012
    identifier issn0027-0644
    identifier otherams-86310.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229854
    description abstracteighborhood and object-based probabilistic precipitation forecasts from a convection-allowing ensemble are verified and calibrated. Calibration methods include logistic regression, one- and two-parameter reliability-based calibration, and cumulative distribution function (CDF)-based bias adjustment. Newly proposed object-based probabilistic forecasts for the occurrence of a forecast object are derived from the percentage of ensemble members with a matching object. Verification and calibration of single- and multimodel subensembles are performed to explore the effect of using multiple models.The uncalibrated neighborhood-based probabilistic forecasts have skill minima during the afternoon convective maximum. Calibration generally improves the skill, especially during the skill minima, resulting in positive skill. In general all calibration methods perform similarly, with a slight advantage of logistic regression (one-parameter reliability based) calibration for 1-h (6 h) accumulations.The uncalibrated object-based probabilistic forecasts are, in general, less skillful than the uncalibrated neighborhood-based probabilistic forecasts. Object-based calibration also results in positive skill at all lead times. For object-based calibration the skill is significantly different among the calibration methods, with the logistic regression performing the best and CDF-based bias adjustment performing the worst.For both the neighborhood and object-based probabilistic forecasts, the impact of using 10 or 25 days of training data for calibration is generally small and is most significant for the two-parameter reliability-based method. An uncalibrated Advanced Research Weather Research and Forecasting Model (ARW-WRF) subensemble is significantly more skillful than an uncalibrated WRF Nonhydrostatic Mesoscale Model (NMM) subensemble. The difference is reduced by calibration. The multimodel subensemble only shows an advantage for the neighborhood-based forecasts beyond 1-day lead time and shows no advantage for the object-based forecasts.
    publisherAmerican Meteorological Society
    titleVerification and Calibration of Neighborhood and Object-Based Probabilistic Precipitation Forecasts from a Multimodel Convection-Allowing Ensemble
    typeJournal Paper
    journal volume140
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-11-00356.1
    journal fristpage3054
    journal lastpage3077
    treeMonthly Weather Review:;2012:;volume( 140 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian