YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bayesian Model Verification of NWP Ensemble Forecasts

    Source: Monthly Weather Review:;2012:;volume( 141 ):;issue: 001::page 375
    Author:
    Röpnack, Andreas
    ,
    Hense, Andreas
    ,
    Gebhardt, Christoph
    ,
    Majewski, Detlev
    DOI: 10.1175/MWR-D-11-00350.1
    Publisher: American Meteorological Society
    Abstract: orecasts of convective precipitation have large uncertainties. To consider the forecast uncertainties of convection-permitting models, a convection-permitting ensemble prediction system (EPS) based on the Consortium for Small-scale Modeling (COSMO) model with a horizontal resolution of 2.8 km covering all of Germany is being developed by the Deutscher Wetterdienst (DWD). The deterministic model is named COSMO-DE. Vertical structures of temperature and humidity affect the potential for convective instability. For verification of vertical model profiles, radiosonde data are used. However, the observed state is uncertain by itself because of the well-known limits in observing the atmosphere. In this work the authors use a probabilistic approach, which considers the observation error as well as the model uncertainty to validate multidimensional state vectors (e.g., temperature profiles) of the COSMO-DE-EPS and of two mesoscale ensembles with horizontal resolution of 10 km and parameterized convection. The mesoscale ensembles are the COSMO short-range EPS (COSMO-SREPS) and the COSMO limited-area EPS (COSMO-LEPS). The approach is based on Bayesian statistics and allows for both verification and comparison of ensembles. The investigation period comprises August 2007 for a comparison of the COSMO-DE-EPS with the COSMO-SREPS. A period of 5 days in July 2007 is used to demonstrate the potential of the Bayesian approach for verification by evaluating the COSMO-SREPS and COSMO-LEPS against COSMO-EU analyses. Based on the Bayesian approach, it is shown that the temperature profiles modeled by the COSMO-DE-EPS are more consistent with the observed profiles than those of COSMO-SREPS.
    • Download: (936.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bayesian Model Verification of NWP Ensemble Forecasts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229848
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorRöpnack, Andreas
    contributor authorHense, Andreas
    contributor authorGebhardt, Christoph
    contributor authorMajewski, Detlev
    date accessioned2017-06-09T17:29:58Z
    date available2017-06-09T17:29:58Z
    date copyright2013/01/01
    date issued2012
    identifier issn0027-0644
    identifier otherams-86304.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229848
    description abstractorecasts of convective precipitation have large uncertainties. To consider the forecast uncertainties of convection-permitting models, a convection-permitting ensemble prediction system (EPS) based on the Consortium for Small-scale Modeling (COSMO) model with a horizontal resolution of 2.8 km covering all of Germany is being developed by the Deutscher Wetterdienst (DWD). The deterministic model is named COSMO-DE. Vertical structures of temperature and humidity affect the potential for convective instability. For verification of vertical model profiles, radiosonde data are used. However, the observed state is uncertain by itself because of the well-known limits in observing the atmosphere. In this work the authors use a probabilistic approach, which considers the observation error as well as the model uncertainty to validate multidimensional state vectors (e.g., temperature profiles) of the COSMO-DE-EPS and of two mesoscale ensembles with horizontal resolution of 10 km and parameterized convection. The mesoscale ensembles are the COSMO short-range EPS (COSMO-SREPS) and the COSMO limited-area EPS (COSMO-LEPS). The approach is based on Bayesian statistics and allows for both verification and comparison of ensembles. The investigation period comprises August 2007 for a comparison of the COSMO-DE-EPS with the COSMO-SREPS. A period of 5 days in July 2007 is used to demonstrate the potential of the Bayesian approach for verification by evaluating the COSMO-SREPS and COSMO-LEPS against COSMO-EU analyses. Based on the Bayesian approach, it is shown that the temperature profiles modeled by the COSMO-DE-EPS are more consistent with the observed profiles than those of COSMO-SREPS.
    publisherAmerican Meteorological Society
    titleBayesian Model Verification of NWP Ensemble Forecasts
    typeJournal Paper
    journal volume141
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-11-00350.1
    journal fristpage375
    journal lastpage387
    treeMonthly Weather Review:;2012:;volume( 141 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian