YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Geographic-Dependent Parameter Optimization on Climate Estimation and Prediction: Simulation with an Intermediate Coupled Model

    Source: Monthly Weather Review:;2012:;volume( 140 ):;issue: 012::page 3956
    Author:
    Wu, Xinrong
    ,
    Zhang, Shaoqing
    ,
    Liu, Zhengyu
    ,
    Rosati, Anthony
    ,
    Delworth, Thomas L.
    ,
    Liu, Yun
    DOI: 10.1175/MWR-D-11-00298.1
    Publisher: American Meteorological Society
    Abstract: ecause of the geographic dependence of model sensitivities and observing systems, allowing optimized parameter values to vary geographically may significantly enhance the signal in parameter estimation. Using an intermediate atmosphere?ocean?land coupled model, the impact of geographic dependence of model sensitivities on parameter optimization is explored within a twin-experiment framework. The coupled model consists of a 1-layer global barotropic atmosphere model, a 1.5-layer baroclinic ocean including a slab mixed layer with simulated upwelling by a streamfunction equation, and a simple land model. The assimilation model is biased by erroneously setting the values of all model parameters. The four most sensitive parameters identified by sensitivity studies are used to perform traditional single-value parameter estimation and new geographic-dependent parameter optimization. Results show that the new parameter optimization significantly improves the quality of state estimates compared to the traditional scheme, with reductions of root-mean-square errors as 41%, 23%, 62%, and 59% for the atmospheric streamfunction, the oceanic streamfunction, sea surface temperature, and land surface temperature, respectively. Consistently, the new parameter optimization greatly improves the model predictability as a result of the improvement of initial conditions and the enhancement of observational signals in optimized parameters. These results suggest that the proposed geographic-dependent parameter optimization scheme may provide a new perspective when a coupled general circulation model is used for climate estimation and prediction.
    • Download: (3.446Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Geographic-Dependent Parameter Optimization on Climate Estimation and Prediction: Simulation with an Intermediate Coupled Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229808
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorWu, Xinrong
    contributor authorZhang, Shaoqing
    contributor authorLiu, Zhengyu
    contributor authorRosati, Anthony
    contributor authorDelworth, Thomas L.
    contributor authorLiu, Yun
    date accessioned2017-06-09T17:29:48Z
    date available2017-06-09T17:29:48Z
    date copyright2012/12/01
    date issued2012
    identifier issn0027-0644
    identifier otherams-86269.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229808
    description abstractecause of the geographic dependence of model sensitivities and observing systems, allowing optimized parameter values to vary geographically may significantly enhance the signal in parameter estimation. Using an intermediate atmosphere?ocean?land coupled model, the impact of geographic dependence of model sensitivities on parameter optimization is explored within a twin-experiment framework. The coupled model consists of a 1-layer global barotropic atmosphere model, a 1.5-layer baroclinic ocean including a slab mixed layer with simulated upwelling by a streamfunction equation, and a simple land model. The assimilation model is biased by erroneously setting the values of all model parameters. The four most sensitive parameters identified by sensitivity studies are used to perform traditional single-value parameter estimation and new geographic-dependent parameter optimization. Results show that the new parameter optimization significantly improves the quality of state estimates compared to the traditional scheme, with reductions of root-mean-square errors as 41%, 23%, 62%, and 59% for the atmospheric streamfunction, the oceanic streamfunction, sea surface temperature, and land surface temperature, respectively. Consistently, the new parameter optimization greatly improves the model predictability as a result of the improvement of initial conditions and the enhancement of observational signals in optimized parameters. These results suggest that the proposed geographic-dependent parameter optimization scheme may provide a new perspective when a coupled general circulation model is used for climate estimation and prediction.
    publisherAmerican Meteorological Society
    titleImpact of Geographic-Dependent Parameter Optimization on Climate Estimation and Prediction: Simulation with an Intermediate Coupled Model
    typeJournal Paper
    journal volume140
    journal issue12
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-11-00298.1
    journal fristpage3956
    journal lastpage3971
    treeMonthly Weather Review:;2012:;volume( 140 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian