YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Warm-Core Formation in Tropical Storm Humberto (2001)

    Source: Monthly Weather Review:;2011:;volume( 140 ):;issue: 004::page 1177
    Author:
    Dolling, Klaus
    ,
    Barnes, Gary M.
    DOI: 10.1175/MWR-D-11-00183.1
    Publisher: American Meteorological Society
    Abstract: t 0600 UTC 22 September 2001, Humberto was a tropical depression with a minimum central pressure of 1010 hPa. Twelve hours later, when the first global positioning system dropwindsondes (GPS sondes) were jettisoned, Humberto?s minimum central pressure was 1000 hPa and it had attained tropical storm strength. Thirty GPS sondes, radar from the WP-3D, and in situ aircraft measurements are utilized to observe thermodynamic structures in Humberto and their relationship to stratiform and convective elements during the early stage of the formation of an eye.The analysis of Tropical Storm Humberto offers a new view of the pre-wind-induced surface heat exchange (pre-WISHE) stage of tropical cyclone evolution. Humberto contained a mesoscale convective vortex (MCV) similar to observations of other developing tropical systems. The MCV advects the exhaust from deep convection in the form of an anvil cyclonically over the low-level circulation center. On the trailing edge of the anvil an area of mesoscale descent induces dry adiabatic warming in the lower troposphere. The nascent warm core at low levels causes the initial drop in pressure at the surface and acts to cap the boundary layer (BL). As BL air flows into the nascent eye, the energy content increases until the energy is released from under the cap on the down shear side of the warm core in the form of vigorous cumulonimbi, which become the nascent eyewall. This series of events show one possible path in which a mesoscale convective system may evolve into a warm-cored structure and intensify into a hurricane.
    • Download: (3.500Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Warm-Core Formation in Tropical Storm Humberto (2001)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229736
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorDolling, Klaus
    contributor authorBarnes, Gary M.
    date accessioned2017-06-09T17:29:31Z
    date available2017-06-09T17:29:31Z
    date copyright2012/04/01
    date issued2011
    identifier issn0027-0644
    identifier otherams-86203.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229736
    description abstractt 0600 UTC 22 September 2001, Humberto was a tropical depression with a minimum central pressure of 1010 hPa. Twelve hours later, when the first global positioning system dropwindsondes (GPS sondes) were jettisoned, Humberto?s minimum central pressure was 1000 hPa and it had attained tropical storm strength. Thirty GPS sondes, radar from the WP-3D, and in situ aircraft measurements are utilized to observe thermodynamic structures in Humberto and their relationship to stratiform and convective elements during the early stage of the formation of an eye.The analysis of Tropical Storm Humberto offers a new view of the pre-wind-induced surface heat exchange (pre-WISHE) stage of tropical cyclone evolution. Humberto contained a mesoscale convective vortex (MCV) similar to observations of other developing tropical systems. The MCV advects the exhaust from deep convection in the form of an anvil cyclonically over the low-level circulation center. On the trailing edge of the anvil an area of mesoscale descent induces dry adiabatic warming in the lower troposphere. The nascent warm core at low levels causes the initial drop in pressure at the surface and acts to cap the boundary layer (BL). As BL air flows into the nascent eye, the energy content increases until the energy is released from under the cap on the down shear side of the warm core in the form of vigorous cumulonimbi, which become the nascent eyewall. This series of events show one possible path in which a mesoscale convective system may evolve into a warm-cored structure and intensify into a hurricane.
    publisherAmerican Meteorological Society
    titleWarm-Core Formation in Tropical Storm Humberto (2001)
    typeJournal Paper
    journal volume140
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-11-00183.1
    journal fristpage1177
    journal lastpage1190
    treeMonthly Weather Review:;2011:;volume( 140 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian