YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Numerical Treatment of Hydrometeor Sedimentation in Bulk and Hybrid Bulk–Bin Microphysics Schemes

    Source: Monthly Weather Review:;2012:;volume( 140 ):;issue: 005::page 1572
    Author:
    Morrison, Hugh
    DOI: 10.1175/MWR-D-11-00140.1
    Publisher: American Meteorological Society
    Abstract: ybrid bulk?bin microphysics schemes discretize particle size distributions into bins for calculating microphysical process rates, while retaining a limited number of bulk prognostic quantities and assuming an underlying analytic functional form for the particle size distributions as in traditional bulk microphysics schemes. In this paper, the treatment of sedimentation in two-moment bulk and hybrid schemes is compared using different numerical methods. Using the first-order upwind method for calculating sedimentation in conjunction with a widely used, two-step, time-splitting approach that updates model fields after transport by air motion followed by calculation of sedimentation, it is shown analytically that despite using a spectrum of fall speeds corresponding to different particle sizes, hybrid schemes converge with increasing bin resolution toward bulk schemes that utilize only characteristic moment-weighted particle fall speeds. While not strictly convergent, it is also shown that solutions using bulk and hybrid schemes are often similar for other numerical methods and approaches. Noticeable improvement using the hybrid scheme occurs in a few circumstances: when the Courant number associated with falling precipitation is large (>>1), requiring substepping, semi-implicit, or Lagrangian-type methods for numerical stability; or when a one-step approach is employed that calculates hydrometeor transport in a single step using a velocity that combines both vertical air motion and particle fall speed. Thus, it is concluded that the use of hybrid rather than bulk schemes is justified for some, but not all, applications, and care should be taken to determine the appropriateness of hybrid schemes for specific applications.
    • Download: (955.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Numerical Treatment of Hydrometeor Sedimentation in Bulk and Hybrid Bulk–Bin Microphysics Schemes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229710
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMorrison, Hugh
    date accessioned2017-06-09T17:29:26Z
    date available2017-06-09T17:29:26Z
    date copyright2012/05/01
    date issued2012
    identifier issn0027-0644
    identifier otherams-86181.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229710
    description abstractybrid bulk?bin microphysics schemes discretize particle size distributions into bins for calculating microphysical process rates, while retaining a limited number of bulk prognostic quantities and assuming an underlying analytic functional form for the particle size distributions as in traditional bulk microphysics schemes. In this paper, the treatment of sedimentation in two-moment bulk and hybrid schemes is compared using different numerical methods. Using the first-order upwind method for calculating sedimentation in conjunction with a widely used, two-step, time-splitting approach that updates model fields after transport by air motion followed by calculation of sedimentation, it is shown analytically that despite using a spectrum of fall speeds corresponding to different particle sizes, hybrid schemes converge with increasing bin resolution toward bulk schemes that utilize only characteristic moment-weighted particle fall speeds. While not strictly convergent, it is also shown that solutions using bulk and hybrid schemes are often similar for other numerical methods and approaches. Noticeable improvement using the hybrid scheme occurs in a few circumstances: when the Courant number associated with falling precipitation is large (>>1), requiring substepping, semi-implicit, or Lagrangian-type methods for numerical stability; or when a one-step approach is employed that calculates hydrometeor transport in a single step using a velocity that combines both vertical air motion and particle fall speed. Thus, it is concluded that the use of hybrid rather than bulk schemes is justified for some, but not all, applications, and care should be taken to determine the appropriateness of hybrid schemes for specific applications.
    publisherAmerican Meteorological Society
    titleOn the Numerical Treatment of Hydrometeor Sedimentation in Bulk and Hybrid Bulk–Bin Microphysics Schemes
    typeJournal Paper
    journal volume140
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-11-00140.1
    journal fristpage1572
    journal lastpage1588
    treeMonthly Weather Review:;2012:;volume( 140 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian