YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Initiation of Boreal Summer Intraseasonal Oscillation: Dynamic Contribution by Potential Vorticity

    Source: Monthly Weather Review:;2012:;volume( 140 ):;issue: 006::page 1748
    Author:
    Seo, Kyong-Hwan
    ,
    Song, Eun-Ji
    DOI: 10.1175/MWR-D-11-00105.1
    Publisher: American Meteorological Society
    Abstract: otential vorticity (PV) thinking conceptually connects the upper-level (upper troposphere in the extratropics and middle troposphere for the tropics) dynamical process to the lower-level process. Here, the initiation mechanism of the boreal summer intraseasonal oscillation (BSISO) in the tropics is investigated using PV thinking. The authors demonstrate that the midtropospheric PV anomaly produces a dynamical environment favorable for the BSISO initiation. Under seasonal easterly vertical wind shear, the PV anomaly enhances low-level convergence and upward motion at its western edge. Tropical PV forcing in the middle troposphere produces balanced mass and circulation fields that spread horizontally and vertically so that its effect can reach even the lowest troposphere. The downward influence of the midtropospheric PV forcing is one of the key aspects of the PV thinking. Direct piecewise PV inversions confirm that the anomalous lower-level zonal wind and its convergence necessary for the initiation of BSISO convection do not arise solely from the response to the lower-level PV forcing but from the summed contribution by PV forcing at all levels. About 50% of the low-level circulation variations result from PV forcing from 700 to 450 hPa, with the largest contribution from the 600?650-hPa PV anomalies for the convection initiation region over the western Indian Ocean. The current study is compared with and incorporated into the thermodynamic recharge process and the frictional moisture flux convergence mechanism for the BSISO initiation. This study is the first qualitative application of the PV thinking approach that reveals the BSISO dynamics.
    • Download: (1.630Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Initiation of Boreal Summer Intraseasonal Oscillation: Dynamic Contribution by Potential Vorticity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229691
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSeo, Kyong-Hwan
    contributor authorSong, Eun-Ji
    date accessioned2017-06-09T17:29:20Z
    date available2017-06-09T17:29:20Z
    date copyright2012/06/01
    date issued2012
    identifier issn0027-0644
    identifier otherams-86163.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229691
    description abstractotential vorticity (PV) thinking conceptually connects the upper-level (upper troposphere in the extratropics and middle troposphere for the tropics) dynamical process to the lower-level process. Here, the initiation mechanism of the boreal summer intraseasonal oscillation (BSISO) in the tropics is investigated using PV thinking. The authors demonstrate that the midtropospheric PV anomaly produces a dynamical environment favorable for the BSISO initiation. Under seasonal easterly vertical wind shear, the PV anomaly enhances low-level convergence and upward motion at its western edge. Tropical PV forcing in the middle troposphere produces balanced mass and circulation fields that spread horizontally and vertically so that its effect can reach even the lowest troposphere. The downward influence of the midtropospheric PV forcing is one of the key aspects of the PV thinking. Direct piecewise PV inversions confirm that the anomalous lower-level zonal wind and its convergence necessary for the initiation of BSISO convection do not arise solely from the response to the lower-level PV forcing but from the summed contribution by PV forcing at all levels. About 50% of the low-level circulation variations result from PV forcing from 700 to 450 hPa, with the largest contribution from the 600?650-hPa PV anomalies for the convection initiation region over the western Indian Ocean. The current study is compared with and incorporated into the thermodynamic recharge process and the frictional moisture flux convergence mechanism for the BSISO initiation. This study is the first qualitative application of the PV thinking approach that reveals the BSISO dynamics.
    publisherAmerican Meteorological Society
    titleInitiation of Boreal Summer Intraseasonal Oscillation: Dynamic Contribution by Potential Vorticity
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-11-00105.1
    journal fristpage1748
    journal lastpage1760
    treeMonthly Weather Review:;2012:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian