YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics

    Source: Monthly Weather Review:;2011:;volume( 140 ):;issue: 001::page 202
    Author:
    Bryan, George H.
    ,
    Morrison, Hugh
    DOI: 10.1175/MWR-D-11-00046.1
    Publisher: American Meteorological Society
    Abstract: dealized simulations of the 15 May 2009 squall line from the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) are evaluated in this study. Four different microphysical setups are used, with either single-moment (1M) or double-moment (2M) microphysics, and either hail or graupel as the dense (rimed) ice species. Three different horizontal grid spacings are used: ?x = 4, 1, or 0.25 km (with identical vertical grids). Overall, results show that simulated squall lines are sensitive to both microphysical setup and horizontal resolution, although some quantities (i.e., surface rainfall) are more sensitive to ?x in this study. Simulations with larger ?x are slower to develop, produce more precipitation, and have higher cloud tops, all of which are attributable to larger convective cells that do not entrain midlevel air. The highest-resolution simulations have substantially more cloud water evaporation, which is partly attributable to the development of resolved turbulence. For a given ?x, the 1M simulations produce less rain, more intense cold pools, and do not have trailing stratiform precipitation at the surface, owing to excessive rainwater evaporation. The simulations with graupel as the dense ice species have unrealistically wide convective regions. Comparison against analyses from VORTEX2 data shows that the 2M setup with hail and ?x = 0.25 km produces the most realistic simulation because (i) this simulation produces realistic distributions of reflectivity associated with convective, transition, and trailing stratiform regions, (ii) the cold pool properties are reasonably close to analyses from VORTEX2, and (iii) relative humidity in the cold pool is closest to observations.
    • Download: (3.027Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229650
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBryan, George H.
    contributor authorMorrison, Hugh
    date accessioned2017-06-09T17:29:13Z
    date available2017-06-09T17:29:13Z
    date copyright2012/01/01
    date issued2011
    identifier issn0027-0644
    identifier otherams-86126.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229650
    description abstractdealized simulations of the 15 May 2009 squall line from the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) are evaluated in this study. Four different microphysical setups are used, with either single-moment (1M) or double-moment (2M) microphysics, and either hail or graupel as the dense (rimed) ice species. Three different horizontal grid spacings are used: ?x = 4, 1, or 0.25 km (with identical vertical grids). Overall, results show that simulated squall lines are sensitive to both microphysical setup and horizontal resolution, although some quantities (i.e., surface rainfall) are more sensitive to ?x in this study. Simulations with larger ?x are slower to develop, produce more precipitation, and have higher cloud tops, all of which are attributable to larger convective cells that do not entrain midlevel air. The highest-resolution simulations have substantially more cloud water evaporation, which is partly attributable to the development of resolved turbulence. For a given ?x, the 1M simulations produce less rain, more intense cold pools, and do not have trailing stratiform precipitation at the surface, owing to excessive rainwater evaporation. The simulations with graupel as the dense ice species have unrealistically wide convective regions. Comparison against analyses from VORTEX2 data shows that the 2M setup with hail and ?x = 0.25 km produces the most realistic simulation because (i) this simulation produces realistic distributions of reflectivity associated with convective, transition, and trailing stratiform regions, (ii) the cold pool properties are reasonably close to analyses from VORTEX2, and (iii) relative humidity in the cold pool is closest to observations.
    publisherAmerican Meteorological Society
    titleSensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics
    typeJournal Paper
    journal volume140
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-11-00046.1
    journal fristpage202
    journal lastpage225
    treeMonthly Weather Review:;2011:;volume( 140 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian