Tornado Maintenance Investigated with High-Resolution Dual-Doppler and EnKF AnalysisSource: Monthly Weather Review:;2011:;volume( 140 ):;issue: 001::page 3DOI: 10.1175/MWR-D-11-00025.1Publisher: American Meteorological Society
Abstract: ual-Doppler wind synthesis and ensemble Kalman filter analyses produced by assimilating Doppler-on-Wheels velocity data collected in four tornadic supercells are examined in order to further understand the maintenance of tornadoes. Although tornado-scale features are not resolved in these analyses, larger-scale processes involved with tornado maintenance are well represented.The longest-lived tornado is maintained underneath the midlevel updraft within a zone of low-level horizontal convergence along a rear-flank gust front for a considerable time, and dissipates when horizontally displaced from the midlevel updraft. The shortest-lived tornado resides in a similar zone of low-level convergence briefly, but dissipates underneath the location of the midlevel updraft when the updraft becomes tilted and low-level convergence is displaced several kilometers from the tornado. This suggests that a location beneath the midlevel updraft is not always a sufficient condition for tornado maintenance, particularly in the presence of strongly surging outflow. Tornadoes in two other storms persist within a band of low-level convergence in the outflow air (a possible secondary rear-flank gust front), suggesting that tornado maintenance can occur away from the main boundary separating the outflow air and the ambient environment.In at least one case, tilting of horizontal vorticity occurs near the tornado along the secondary gust front, as evidenced by three-dimensional vortex line arching. This observation suggests that a relatively cold secondary rear-flank downdraft may assist with tornado maintenance through the baroclinic generation and tilting of horizontal vorticity, despite the fact that parcels composing them would be more negatively buoyant than the preceding outflow air.
|
Collections
Show full item record
| contributor author | Marquis, James | |
| contributor author | Richardson, Yvette | |
| contributor author | Markowski, Paul | |
| contributor author | Dowell, David | |
| contributor author | Wurman, Joshua | |
| date accessioned | 2017-06-09T17:29:09Z | |
| date available | 2017-06-09T17:29:09Z | |
| date copyright | 2012/01/01 | |
| date issued | 2011 | |
| identifier issn | 0027-0644 | |
| identifier other | ams-86113.pdf | |
| identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4229636 | |
| description abstract | ual-Doppler wind synthesis and ensemble Kalman filter analyses produced by assimilating Doppler-on-Wheels velocity data collected in four tornadic supercells are examined in order to further understand the maintenance of tornadoes. Although tornado-scale features are not resolved in these analyses, larger-scale processes involved with tornado maintenance are well represented.The longest-lived tornado is maintained underneath the midlevel updraft within a zone of low-level horizontal convergence along a rear-flank gust front for a considerable time, and dissipates when horizontally displaced from the midlevel updraft. The shortest-lived tornado resides in a similar zone of low-level convergence briefly, but dissipates underneath the location of the midlevel updraft when the updraft becomes tilted and low-level convergence is displaced several kilometers from the tornado. This suggests that a location beneath the midlevel updraft is not always a sufficient condition for tornado maintenance, particularly in the presence of strongly surging outflow. Tornadoes in two other storms persist within a band of low-level convergence in the outflow air (a possible secondary rear-flank gust front), suggesting that tornado maintenance can occur away from the main boundary separating the outflow air and the ambient environment.In at least one case, tilting of horizontal vorticity occurs near the tornado along the secondary gust front, as evidenced by three-dimensional vortex line arching. This observation suggests that a relatively cold secondary rear-flank downdraft may assist with tornado maintenance through the baroclinic generation and tilting of horizontal vorticity, despite the fact that parcels composing them would be more negatively buoyant than the preceding outflow air. | |
| publisher | American Meteorological Society | |
| title | Tornado Maintenance Investigated with High-Resolution Dual-Doppler and EnKF Analysis | |
| type | Journal Paper | |
| journal volume | 140 | |
| journal issue | 1 | |
| journal title | Monthly Weather Review | |
| identifier doi | 10.1175/MWR-D-11-00025.1 | |
| journal fristpage | 3 | |
| journal lastpage | 27 | |
| tree | Monthly Weather Review:;2011:;volume( 140 ):;issue: 001 | |
| contenttype | Fulltext |