YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of a Spatial/Spectral Covariance Localization Approach for Atmospheric Data Assimilation

    Source: Monthly Weather Review:;2011:;volume( 140 ):;issue: 002::page 617
    Author:
    Buehner, Mark
    DOI: 10.1175/MWR-D-10-05052.1
    Publisher: American Meteorological Society
    Abstract: n this study, several approaches for estimating background-error covariances from an ensemble of error realizations are examined, including a new spatial/spectral localization approach. The new approach shares aspects of both the spatial localization and wavelet-diagonal approaches. This approach also enables the use of different spatial localization functions for the covariances associated with each of a set of overlapping horizontal wavenumber bands. The use of such scale-dependent spatial localization (more severe localization for small horizontal scales) is shown to reduce the error in spatial correlation estimates. A comparison of spatial localization, spatial/spectral localization, and wavelet-diagonal approaches shows that the approach resulting in the lowest estimation error depends on the ensemble size. For a relatively large ensemble (48 members), the spatial/spectral localization approach produces the lowest error. When using a much smaller ensemble (12 members), the wavelet-diagonal approach results in the lowest error. Qualitatively, the horizontal correlation functions resulting from spatial/spectral localization appear smoother and less noisy than those from spatial localization, but preserve more of the heterogeneous and anisotropic nature of the raw sample correlations than the wavelet-diagonal approach. The new spatial/spectral localization approach is compared with spatial localization in a set of 1-month three-dimensional variational data assimilation (3D-Var) experiments using a full set of real atmospheric observations. Preliminary results show that spatial/spectral localization provides a nearly similar forecast quality, and in some regions improved forecast quality, as spatial localization while using an ensemble of half the size (48 vs 96 members).
    • Download: (4.369Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of a Spatial/Spectral Covariance Localization Approach for Atmospheric Data Assimilation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229588
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBuehner, Mark
    date accessioned2017-06-09T17:29:00Z
    date available2017-06-09T17:29:00Z
    date copyright2012/02/01
    date issued2011
    identifier issn0027-0644
    identifier otherams-86071.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229588
    description abstractn this study, several approaches for estimating background-error covariances from an ensemble of error realizations are examined, including a new spatial/spectral localization approach. The new approach shares aspects of both the spatial localization and wavelet-diagonal approaches. This approach also enables the use of different spatial localization functions for the covariances associated with each of a set of overlapping horizontal wavenumber bands. The use of such scale-dependent spatial localization (more severe localization for small horizontal scales) is shown to reduce the error in spatial correlation estimates. A comparison of spatial localization, spatial/spectral localization, and wavelet-diagonal approaches shows that the approach resulting in the lowest estimation error depends on the ensemble size. For a relatively large ensemble (48 members), the spatial/spectral localization approach produces the lowest error. When using a much smaller ensemble (12 members), the wavelet-diagonal approach results in the lowest error. Qualitatively, the horizontal correlation functions resulting from spatial/spectral localization appear smoother and less noisy than those from spatial localization, but preserve more of the heterogeneous and anisotropic nature of the raw sample correlations than the wavelet-diagonal approach. The new spatial/spectral localization approach is compared with spatial localization in a set of 1-month three-dimensional variational data assimilation (3D-Var) experiments using a full set of real atmospheric observations. Preliminary results show that spatial/spectral localization provides a nearly similar forecast quality, and in some regions improved forecast quality, as spatial localization while using an ensemble of half the size (48 vs 96 members).
    publisherAmerican Meteorological Society
    titleEvaluation of a Spatial/Spectral Covariance Localization Approach for Atmospheric Data Assimilation
    typeJournal Paper
    journal volume140
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-10-05052.1
    journal fristpage617
    journal lastpage636
    treeMonthly Weather Review:;2011:;volume( 140 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian