YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Coastal Precipitation Forecasts with Direct Assimilation of GOES-11/12 Imager Radiances

    Source: Monthly Weather Review:;2011:;volume( 139 ):;issue: 012::page 3711
    Author:
    Zou, Xiaolei
    ,
    Qin, Zhengkun
    ,
    Weng, Fuzhong
    DOI: 10.1175/MWR-D-10-05040.1
    Publisher: American Meteorological Society
    Abstract: he Geostationary Operational Environmental Satellite (GOES) imager provides observations that are of high spatial and temporal resolution and can be applied for effectively monitoring and nowcasting severe weather events. In this study, improved quantitative precipitation forecasts (QPFs) for three coastal storms over the northern Gulf of Mexico and the East Coast is demonstrated by assimilating GOES-11 and GOES-12 imager radiances into the Weather Research and Forecasting (WRF) model. Both the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) analysis system and the Community Radiative Transfer Model (CRTM) are utilized to ingest GOES IR clear-sky data. Assimilation of GOES imager radiances during a 6?12-h time window prior to convective initiation and/or development could significantly improve the precipitation forecasts near the coast of the northern Gulf of Mexico. The 3-h accumulative precipitation threat scores are increased by about 20% after 6 h of model forecasts and more than 50% after 18?24 h of model forecasts. A detailed diagnosis of analysis fields and model forecast fields is carried out for one of the three convective precipitation events included in this study. It is shown that the assimilation of GOES data in regions of no or little clouds improved the model description of an upstream midlatitude trough and a subtropical high located in the south of the convection. The GOES observations located in the western part of land region covered by GOES within the latitude zone of 18°?37°N near 100°W contributed to a better forecast of the position of the eastward-propagating trough, while GOES observations over the Gulf of Mexico increased the amount of water vapor advection from the south into the convective region by the wind associated with the subtropical high. In the past, GOES imager radiances were not directly used in the GSI system. This study highlights the importance of satellite imagery information observed in the preconvective environment for improved cloud and precipitation forecasts. The developed data assimilation technique will prepare the NWP user community for accelerated use of advanced satellite data from the GOES-R series.
    • Download: (10.63Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Coastal Precipitation Forecasts with Direct Assimilation of GOES-11/12 Imager Radiances

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229579
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorZou, Xiaolei
    contributor authorQin, Zhengkun
    contributor authorWeng, Fuzhong
    date accessioned2017-06-09T17:28:58Z
    date available2017-06-09T17:28:58Z
    date copyright2011/12/01
    date issued2011
    identifier issn0027-0644
    identifier otherams-86062.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229579
    description abstracthe Geostationary Operational Environmental Satellite (GOES) imager provides observations that are of high spatial and temporal resolution and can be applied for effectively monitoring and nowcasting severe weather events. In this study, improved quantitative precipitation forecasts (QPFs) for three coastal storms over the northern Gulf of Mexico and the East Coast is demonstrated by assimilating GOES-11 and GOES-12 imager radiances into the Weather Research and Forecasting (WRF) model. Both the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) analysis system and the Community Radiative Transfer Model (CRTM) are utilized to ingest GOES IR clear-sky data. Assimilation of GOES imager radiances during a 6?12-h time window prior to convective initiation and/or development could significantly improve the precipitation forecasts near the coast of the northern Gulf of Mexico. The 3-h accumulative precipitation threat scores are increased by about 20% after 6 h of model forecasts and more than 50% after 18?24 h of model forecasts. A detailed diagnosis of analysis fields and model forecast fields is carried out for one of the three convective precipitation events included in this study. It is shown that the assimilation of GOES data in regions of no or little clouds improved the model description of an upstream midlatitude trough and a subtropical high located in the south of the convection. The GOES observations located in the western part of land region covered by GOES within the latitude zone of 18°?37°N near 100°W contributed to a better forecast of the position of the eastward-propagating trough, while GOES observations over the Gulf of Mexico increased the amount of water vapor advection from the south into the convective region by the wind associated with the subtropical high. In the past, GOES imager radiances were not directly used in the GSI system. This study highlights the importance of satellite imagery information observed in the preconvective environment for improved cloud and precipitation forecasts. The developed data assimilation technique will prepare the NWP user community for accelerated use of advanced satellite data from the GOES-R series.
    publisherAmerican Meteorological Society
    titleImproved Coastal Precipitation Forecasts with Direct Assimilation of GOES-11/12 Imager Radiances
    typeJournal Paper
    journal volume139
    journal issue12
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-10-05040.1
    journal fristpage3711
    journal lastpage3729
    treeMonthly Weather Review:;2011:;volume( 139 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian