YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sequential State and Variance Estimation within the Ensemble Kalman Filter

    Source: Monthly Weather Review:;2007:;volume( 135 ):;issue: 009::page 3194
    Author:
    Stroud, Jonathan R.
    ,
    Bengtsson, Thomas
    DOI: 10.1175/MWR3460.1
    Publisher: American Meteorological Society
    Abstract: Kalman filter methods for real-time assimilation of observations and dynamical systems typically assume knowledge of the system parameters. However, relatively little work has been done on extending state estimation procedures to include parameter estimation. Here, in the context of the ensemble Kalman filter, a Monte Carlo?based algorithm is proposed for sequential estimation of the states and an unknown scalar observation variance. A Bayesian approach is adopted that yields analytical updating of the parameter distribution and provides samples from the posterior distribution of the states and parameters. The proposed assimilation algorithm extends standard ensemble methods, including perturbed observations, and serial and square root assimilation schemes. The method is illustrated on the Lorenz 40-variable system and is shown to be robust with system nonlinearities, sparse observation networks, and the choice of the initial parameter distribution.
    • Download: (1.034Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sequential State and Variance Estimation within the Ensemble Kalman Filter

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229517
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorStroud, Jonathan R.
    contributor authorBengtsson, Thomas
    date accessioned2017-06-09T17:28:44Z
    date available2017-06-09T17:28:44Z
    date copyright2007/09/01
    date issued2007
    identifier issn0027-0644
    identifier otherams-86006.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229517
    description abstractKalman filter methods for real-time assimilation of observations and dynamical systems typically assume knowledge of the system parameters. However, relatively little work has been done on extending state estimation procedures to include parameter estimation. Here, in the context of the ensemble Kalman filter, a Monte Carlo?based algorithm is proposed for sequential estimation of the states and an unknown scalar observation variance. A Bayesian approach is adopted that yields analytical updating of the parameter distribution and provides samples from the posterior distribution of the states and parameters. The proposed assimilation algorithm extends standard ensemble methods, including perturbed observations, and serial and square root assimilation schemes. The method is illustrated on the Lorenz 40-variable system and is shown to be robust with system nonlinearities, sparse observation networks, and the choice of the initial parameter distribution.
    publisherAmerican Meteorological Society
    titleSequential State and Variance Estimation within the Ensemble Kalman Filter
    typeJournal Paper
    journal volume135
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3460.1
    journal fristpage3194
    journal lastpage3208
    treeMonthly Weather Review:;2007:;volume( 135 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian