YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Spatial-Scale Decomposition of the Brier Score: Application to the Verification of Lightning Probability Forecasts

    Source: Monthly Weather Review:;2007:;volume( 135 ):;issue: 009::page 3052
    Author:
    Casati, B.
    ,
    Wilson, L. J.
    DOI: 10.1175/MWR3442.1
    Publisher: American Meteorological Society
    Abstract: A new scale decomposition of the Brier score for the verification of probabilistic forecasts defined on a spatial domain is introduced. The technique is illustrated on the Canadian Meteorological Centre (CMC) lightning probability forecasts. Probability forecasts of lightning occurrence in 3-h time windows and 24-km spatial resolution are verified against lightning observations from the North American Lightning Detection Network (NALDN) on a domain encompassing Canada and the northern United States. Verification is performed for lightning occurrences exceeding two different thresholds, to assess the forecast performance both for modest and intense lightning activity. Observation and forecast fields are decomposed into the sum of components on different spatial scales by performing a discrete 2D Haar wavelet decomposition. Wavelets, rather than Fourier transforms, were chosen because they are locally defined, and therefore more suitable for representing discontinuous spatial fields characterized by the presence of a few sparse nonzero values, such as lightning. Verification at different spatial scales is performed by evaluating Brier score and Brier skill score for each spatial-scale component. Reliability and resolution are also evaluated on different scales. Moreover, the bias on different scales is assessed, along with the ability of the forecasts to reproduce the observed-scale structure.
    • Download: (2.286Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Spatial-Scale Decomposition of the Brier Score: Application to the Verification of Lightning Probability Forecasts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229495
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorCasati, B.
    contributor authorWilson, L. J.
    date accessioned2017-06-09T17:28:40Z
    date available2017-06-09T17:28:40Z
    date copyright2007/09/01
    date issued2007
    identifier issn0027-0644
    identifier otherams-85988.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229495
    description abstractA new scale decomposition of the Brier score for the verification of probabilistic forecasts defined on a spatial domain is introduced. The technique is illustrated on the Canadian Meteorological Centre (CMC) lightning probability forecasts. Probability forecasts of lightning occurrence in 3-h time windows and 24-km spatial resolution are verified against lightning observations from the North American Lightning Detection Network (NALDN) on a domain encompassing Canada and the northern United States. Verification is performed for lightning occurrences exceeding two different thresholds, to assess the forecast performance both for modest and intense lightning activity. Observation and forecast fields are decomposed into the sum of components on different spatial scales by performing a discrete 2D Haar wavelet decomposition. Wavelets, rather than Fourier transforms, were chosen because they are locally defined, and therefore more suitable for representing discontinuous spatial fields characterized by the presence of a few sparse nonzero values, such as lightning. Verification at different spatial scales is performed by evaluating Brier score and Brier skill score for each spatial-scale component. Reliability and resolution are also evaluated on different scales. Moreover, the bias on different scales is assessed, along with the ability of the forecasts to reproduce the observed-scale structure.
    publisherAmerican Meteorological Society
    titleA New Spatial-Scale Decomposition of the Brier Score: Application to the Verification of Lightning Probability Forecasts
    typeJournal Paper
    journal volume135
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3442.1
    journal fristpage3052
    journal lastpage3069
    treeMonthly Weather Review:;2007:;volume( 135 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian