YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Adjoint Sensitivity of Surface Precipitation to Initial Conditions

    Source: Monthly Weather Review:;2007:;volume( 135 ):;issue: 008::page 2879
    Author:
    Mahfouf, Jean-François
    ,
    Bilodeau, Bernard
    DOI: 10.1175/MWR3439.1
    Publisher: American Meteorological Society
    Abstract: The adjoint version of the Global Environmental Multiscale model including a comprehensive package of simplified and linearized physical processes (large-scale condensation, deep moist convection, vertical diffusion, and subgrid-scale orographic effects) is used to evaluate the sensitivity of surface precipitation to initial conditions for up to 24 h for two meteorological systems: a midlatitude front and a tropical cyclone. Such diagnostics are useful to improve the understanding on variational assimilation of precipitation data. In agreement with a similar study, the largest sensitivity is found with respect to the temperature field for both stratiform and convective precipitation. Close to the observation time and for stratiform precipitation, the sensitivity with respect to specific humidity is rather large, which corroborates conclusions from previous one-dimensional variational data assimilation experimentations. The sensitivity is then reduced significantly after the observation time. The sensitivities of surface precipitation to the wind components and to specific humidity are comparable and are at a maximum at the observation time. The sensitivity to the surface pressure is always much smaller than the sensitivity to the other variables. In general, sensitivities are largest at the observation time and then decrease. However, for the midlatitude perturbation, the sensitivity is enhanced after 12 h for stratiform precipitation and also for convective precipitation using a scheme based on the moisture convergence closure. This results from a dynamical coupling upstream of the area of interest through baroclinic instability as evidenced by vertically backward-tilted sensitivities. Such enhancement is not observed for the tropical case. The tangent-linear approximation remains acceptable for accumulated precipitation up to 24 h but is rather poor for instantaneous rain rates. The variational assimilation of accumulated precipitation should thus be favored.
    • Download: (1.529Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Adjoint Sensitivity of Surface Precipitation to Initial Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229492
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMahfouf, Jean-François
    contributor authorBilodeau, Bernard
    date accessioned2017-06-09T17:28:39Z
    date available2017-06-09T17:28:39Z
    date copyright2007/08/01
    date issued2007
    identifier issn0027-0644
    identifier otherams-85985.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229492
    description abstractThe adjoint version of the Global Environmental Multiscale model including a comprehensive package of simplified and linearized physical processes (large-scale condensation, deep moist convection, vertical diffusion, and subgrid-scale orographic effects) is used to evaluate the sensitivity of surface precipitation to initial conditions for up to 24 h for two meteorological systems: a midlatitude front and a tropical cyclone. Such diagnostics are useful to improve the understanding on variational assimilation of precipitation data. In agreement with a similar study, the largest sensitivity is found with respect to the temperature field for both stratiform and convective precipitation. Close to the observation time and for stratiform precipitation, the sensitivity with respect to specific humidity is rather large, which corroborates conclusions from previous one-dimensional variational data assimilation experimentations. The sensitivity is then reduced significantly after the observation time. The sensitivities of surface precipitation to the wind components and to specific humidity are comparable and are at a maximum at the observation time. The sensitivity to the surface pressure is always much smaller than the sensitivity to the other variables. In general, sensitivities are largest at the observation time and then decrease. However, for the midlatitude perturbation, the sensitivity is enhanced after 12 h for stratiform precipitation and also for convective precipitation using a scheme based on the moisture convergence closure. This results from a dynamical coupling upstream of the area of interest through baroclinic instability as evidenced by vertically backward-tilted sensitivities. Such enhancement is not observed for the tropical case. The tangent-linear approximation remains acceptable for accumulated precipitation up to 24 h but is rather poor for instantaneous rain rates. The variational assimilation of accumulated precipitation should thus be favored.
    publisherAmerican Meteorological Society
    titleAdjoint Sensitivity of Surface Precipitation to Initial Conditions
    typeJournal Paper
    journal volume135
    journal issue8
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3439.1
    journal fristpage2879
    journal lastpage2896
    treeMonthly Weather Review:;2007:;volume( 135 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian