YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada

    Source: Monthly Weather Review:;2007:;volume( 135 ):;issue: 006::page 2339
    Author:
    Gauthier, Pierre
    ,
    Tanguay, Monique
    ,
    Laroche, Stéphane
    ,
    Pellerin, Simon
    ,
    Morneau, Josée
    DOI: 10.1175/MWR3394.1
    Publisher: American Meteorological Society
    Abstract: On 15 March 2005, the Meteorological Service of Canada (MSC) proceeded to the implementation of a four-dimensional variational data assimilation (4DVAR) system, which led to significant improvements in the quality of global forecasts. This paper describes the different elements of MSC?s 4DVAR assimilation system, discusses some issues encountered during the development, and reports on the overall results from the 4DVAR implementation tests. The 4DVAR system adopted an incremental approach with two outer iterations. The simplified model used in the minimization has a horizontal resolution of 170 km and its simplified physics includes vertical diffusion, surface drag, orographic blocking, stratiform condensation, and convection. One important element of the design is its modularity, which has permitted continued progress on the three-dimensional variational data assimilation (3DVAR) component (e.g., addition of new observation types) and the model (e.g., computational and numerical changes). This paper discusses some numerical problems that occur in the vicinity of the Poles where the semi-Lagrangian scheme becomes unstable when there is a simultaneous occurrence of converging meridians and strong wind gradients. These could be removed by filtering the winds in the zonal direction before they are used to estimate the upstream position in the semi-Lagrangian scheme. The results show improvements in all aspects of the forecasts over all regions. The impact is particularly significant in the Southern Hemisphere where 4DVAR is able to extract more information from satellite data. In the Northern Hemisphere, 4DVAR accepts more asynoptic data, in particular coming from profilers and aircrafts. The impact noted is also positive and the short-term forecasts are particularly improved over the west coast of North America. Finally, the dynamical consistency of the 4DVAR global analyses leads to a significant impact on regional forecasts. Experimentation has shown that regional forecasts initiated directly from a 4DVAR global analysis are improved with respect to the regional forecasts resulting from the regional 3DVAR analysis.
    • Download: (1.122Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229442
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorGauthier, Pierre
    contributor authorTanguay, Monique
    contributor authorLaroche, Stéphane
    contributor authorPellerin, Simon
    contributor authorMorneau, Josée
    date accessioned2017-06-09T17:28:32Z
    date available2017-06-09T17:28:32Z
    date copyright2007/06/01
    date issued2007
    identifier issn0027-0644
    identifier otherams-85940.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229442
    description abstractOn 15 March 2005, the Meteorological Service of Canada (MSC) proceeded to the implementation of a four-dimensional variational data assimilation (4DVAR) system, which led to significant improvements in the quality of global forecasts. This paper describes the different elements of MSC?s 4DVAR assimilation system, discusses some issues encountered during the development, and reports on the overall results from the 4DVAR implementation tests. The 4DVAR system adopted an incremental approach with two outer iterations. The simplified model used in the minimization has a horizontal resolution of 170 km and its simplified physics includes vertical diffusion, surface drag, orographic blocking, stratiform condensation, and convection. One important element of the design is its modularity, which has permitted continued progress on the three-dimensional variational data assimilation (3DVAR) component (e.g., addition of new observation types) and the model (e.g., computational and numerical changes). This paper discusses some numerical problems that occur in the vicinity of the Poles where the semi-Lagrangian scheme becomes unstable when there is a simultaneous occurrence of converging meridians and strong wind gradients. These could be removed by filtering the winds in the zonal direction before they are used to estimate the upstream position in the semi-Lagrangian scheme. The results show improvements in all aspects of the forecasts over all regions. The impact is particularly significant in the Southern Hemisphere where 4DVAR is able to extract more information from satellite data. In the Northern Hemisphere, 4DVAR accepts more asynoptic data, in particular coming from profilers and aircrafts. The impact noted is also positive and the short-term forecasts are particularly improved over the west coast of North America. Finally, the dynamical consistency of the 4DVAR global analyses leads to a significant impact on regional forecasts. Experimentation has shown that regional forecasts initiated directly from a 4DVAR global analysis are improved with respect to the regional forecasts resulting from the regional 3DVAR analysis.
    publisherAmerican Meteorological Society
    titleExtension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada
    typeJournal Paper
    journal volume135
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3394.1
    journal fristpage2339
    journal lastpage2354
    treeMonthly Weather Review:;2007:;volume( 135 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian