YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Predictive Skill and the Most Predictable Pattern in the Tropical Atlantic: The Effect of ENSO

    Source: Monthly Weather Review:;2007:;volume( 135 ):;issue: 005::page 1786
    Author:
    Hu, Zeng-Zhen
    ,
    Huang, Bohua
    DOI: 10.1175/MWR3393.1
    Publisher: American Meteorological Society
    Abstract: This work investigates the predictive skill and most predictable pattern in the NCEP Climate Forecast System (CFS) in the tropical Atlantic Ocean. The skill is measured by the sea surface temperature (SST) anomaly correlation between the predictions and the corresponding analyses, and the most predictable patterns are isolated by an empirical orthogonal function analysis with a maximized signal-to-noise ratio. On average, for predictions with initial conditions (ICs) of all months, the predictability of SST is higher in the west than in the east. The highest skill is near the tropical Brazilian coast and in the Caribbean Sea, and the lowest skill occurs in the eastern coast. Seasonally, the skill is higher for predictions with ICs in summer or autumn and lower for those with ICs in spring. The CFS poorly predicts the meridional gradient in the tropical Atlantic Ocean. The superiority of the CFS predictions to the persistence forecasts depends on IC month, region, and lead time. The CFS prediction is generally better than the corresponding persistence forecast when the lead time is longer than 3 months. The most predictable pattern of SST in March has the same sign in almost the whole tropical Atlantic. The corresponding pattern in March is dominated by the same sign for geopotential height at 200 hPa in most of the domain and by significant opposite variation for precipitation between the northwestern tropical North Atlantic and the regions from tropical South America to the southwestern tropical North Atlantic. These predictable signals mainly result from the influence of the El Niño?Southern Oscillation (ENSO). The significant values in the most predictable pattern of precipitation in the regions from tropical South America to the southwestern tropical North Atlantic in March are associated with excessive divergence (convergence) at low (high) levels over these regions in the CFS. For the CFS, the predictive skill in the tropical Atlantic Ocean is largely determined by its ability to predict ENSO. This is due to the strong connection between ENSO and the most predictable patterns in the tropical Atlantic Ocean in the model. The higher predictive skill of tropical North Atlantic SST is consistent with the ability of the CFS to predict ENSO on interseasonal time scales, particularly for the ICs in warm months from March to October. In the southeastern ocean, the systematic warm bias is a crucial factor leading to the low skill in this region.
    • Download: (5.199Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Predictive Skill and the Most Predictable Pattern in the Tropical Atlantic: The Effect of ENSO

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229441
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHu, Zeng-Zhen
    contributor authorHuang, Bohua
    date accessioned2017-06-09T17:28:31Z
    date available2017-06-09T17:28:31Z
    date copyright2007/05/01
    date issued2007
    identifier issn0027-0644
    identifier otherams-85939.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229441
    description abstractThis work investigates the predictive skill and most predictable pattern in the NCEP Climate Forecast System (CFS) in the tropical Atlantic Ocean. The skill is measured by the sea surface temperature (SST) anomaly correlation between the predictions and the corresponding analyses, and the most predictable patterns are isolated by an empirical orthogonal function analysis with a maximized signal-to-noise ratio. On average, for predictions with initial conditions (ICs) of all months, the predictability of SST is higher in the west than in the east. The highest skill is near the tropical Brazilian coast and in the Caribbean Sea, and the lowest skill occurs in the eastern coast. Seasonally, the skill is higher for predictions with ICs in summer or autumn and lower for those with ICs in spring. The CFS poorly predicts the meridional gradient in the tropical Atlantic Ocean. The superiority of the CFS predictions to the persistence forecasts depends on IC month, region, and lead time. The CFS prediction is generally better than the corresponding persistence forecast when the lead time is longer than 3 months. The most predictable pattern of SST in March has the same sign in almost the whole tropical Atlantic. The corresponding pattern in March is dominated by the same sign for geopotential height at 200 hPa in most of the domain and by significant opposite variation for precipitation between the northwestern tropical North Atlantic and the regions from tropical South America to the southwestern tropical North Atlantic. These predictable signals mainly result from the influence of the El Niño?Southern Oscillation (ENSO). The significant values in the most predictable pattern of precipitation in the regions from tropical South America to the southwestern tropical North Atlantic in March are associated with excessive divergence (convergence) at low (high) levels over these regions in the CFS. For the CFS, the predictive skill in the tropical Atlantic Ocean is largely determined by its ability to predict ENSO. This is due to the strong connection between ENSO and the most predictable patterns in the tropical Atlantic Ocean in the model. The higher predictive skill of tropical North Atlantic SST is consistent with the ability of the CFS to predict ENSO on interseasonal time scales, particularly for the ICs in warm months from March to October. In the southeastern ocean, the systematic warm bias is a crucial factor leading to the low skill in this region.
    publisherAmerican Meteorological Society
    titleThe Predictive Skill and the Most Predictable Pattern in the Tropical Atlantic: The Effect of ENSO
    typeJournal Paper
    journal volume135
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3393.1
    journal fristpage1786
    journal lastpage1806
    treeMonthly Weather Review:;2007:;volume( 135 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian