YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    How Does the Tibetan Plateau Affect the Transition of Indian Monsoon Rainfall?

    Source: Monthly Weather Review:;2007:;volume( 135 ):;issue: 005::page 2006
    Author:
    Sato, Tomonori
    ,
    Kimura, Fujio
    DOI: 10.1175/MWR3386.1
    Publisher: American Meteorological Society
    Abstract: The roles of the Tibetan Plateau (TP) upon the transition of precipitation in the south Asian summer monsoon are investigated using a simplified regional climate model. Before the onset of the south Asian monsoon, descending flow in the midtroposphere, which can be considered as a suppressor against precipitation, prevails over northern India as revealed by the NCEP?NCAR reanalysis data. The descending motion gradually weakens and retreats from this region before July, consistent with the northwestward migration of the monsoon rainfall. To examine a hypothesis that the dynamical and thermal effects of TP cause the midtropospheric subsidence and its seasonal variation, a series of numerical experiments are conducted using a simplified regional climate model. The mechanical effect of the TP generates robust descending flow over northern India during winter and spring when the zonal westerly flow is relatively strong, but the effect becomes weaker after April as the westerly flow tends to be weaker. The thermal effect of the TP, contrastingly, enhances the descending flow over north India in the premonsoonal season. The descending flow enhanced by the thermal effect of the TP has a seasonal cycle because the global-scale upper-level westerly changes the energy propagation of the thermal forcing response. The subsidence formed by the mechanical and thermal effects of the TP disappears over northern India after the subtropical westerly shifts north of the plateau, the seasonal change of which is in good agreement with that in the reanalysis data. The retreat of the descending flow can be regarded as the withdrawal of the premonsoon season and the commencement of the south Asian monsoon. After that, the deep convection, indicating the onset of the Indian summer monsoon, is able to develop over north India in relation to the ocean?atmosphere and land?atmosphere interaction processes. Northwest India is known to be the latest region of summer monsoon onset in south Asia. Thus, the thermal and mechanical forcing of the TP has great impact on the transition of the Indian monsoon rainfall by changing the midtropospheric circulation.
    • Download: (1.620Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      How Does the Tibetan Plateau Affect the Transition of Indian Monsoon Rainfall?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229434
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSato, Tomonori
    contributor authorKimura, Fujio
    date accessioned2017-06-09T17:28:30Z
    date available2017-06-09T17:28:30Z
    date copyright2007/05/01
    date issued2007
    identifier issn0027-0644
    identifier otherams-85932.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229434
    description abstractThe roles of the Tibetan Plateau (TP) upon the transition of precipitation in the south Asian summer monsoon are investigated using a simplified regional climate model. Before the onset of the south Asian monsoon, descending flow in the midtroposphere, which can be considered as a suppressor against precipitation, prevails over northern India as revealed by the NCEP?NCAR reanalysis data. The descending motion gradually weakens and retreats from this region before July, consistent with the northwestward migration of the monsoon rainfall. To examine a hypothesis that the dynamical and thermal effects of TP cause the midtropospheric subsidence and its seasonal variation, a series of numerical experiments are conducted using a simplified regional climate model. The mechanical effect of the TP generates robust descending flow over northern India during winter and spring when the zonal westerly flow is relatively strong, but the effect becomes weaker after April as the westerly flow tends to be weaker. The thermal effect of the TP, contrastingly, enhances the descending flow over north India in the premonsoonal season. The descending flow enhanced by the thermal effect of the TP has a seasonal cycle because the global-scale upper-level westerly changes the energy propagation of the thermal forcing response. The subsidence formed by the mechanical and thermal effects of the TP disappears over northern India after the subtropical westerly shifts north of the plateau, the seasonal change of which is in good agreement with that in the reanalysis data. The retreat of the descending flow can be regarded as the withdrawal of the premonsoon season and the commencement of the south Asian monsoon. After that, the deep convection, indicating the onset of the Indian summer monsoon, is able to develop over north India in relation to the ocean?atmosphere and land?atmosphere interaction processes. Northwest India is known to be the latest region of summer monsoon onset in south Asia. Thus, the thermal and mechanical forcing of the TP has great impact on the transition of the Indian monsoon rainfall by changing the midtropospheric circulation.
    publisherAmerican Meteorological Society
    titleHow Does the Tibetan Plateau Affect the Transition of Indian Monsoon Rainfall?
    typeJournal Paper
    journal volume135
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3386.1
    journal fristpage2006
    journal lastpage2015
    treeMonthly Weather Review:;2007:;volume( 135 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian