YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identifying Cloud-Uncontaminated AIRS Spectra from Cloudy FOV Based on Cloud-Top Pressure and Weighting Functions

    Source: Monthly Weather Review:;2007:;volume( 135 ):;issue: 006::page 2278
    Author:
    Carrier, M.
    ,
    Zou, X.
    ,
    Lapenta, William M.
    DOI: 10.1175/MWR3384.1
    Publisher: American Meteorological Society
    Abstract: An effort is made to increase the number of Advanced Infrared Sounder (AIRS) cloud-uncontaminated infrared data for regional mesoscale data assimilation and short-term quantitative precipitation forecast (QPF) applications. The cloud-top pressure from Moderate Resolution Imaging Spectroradiometer (MODIS) is utilized in combination with weighting functions (WFs) to develop a channel-based cloudy-data-removal algorithm. This algorithm identifies ?clear channels? for which the brightness temperature (BT) values are not cloud contaminated. A channel-dependent cutoff pressure (COP) level is first determined based on the structure of the WF of each channel. It is usually below the maximum WF level. If the cloud top (as identified by a MODIS cloud mask) is above (below) the COP level of a channel, this channel is then deemed cloudy (clear) and removed (retained). Using this algorithm, a sizable increase of cloud-uncontaminated AIRS data can be obtained. There are more usable domain points for those channels with higher COP levels. A case study is conducted. It is shown that instead of having less than 20% AIRS clear-sky observations, the algorithm finds 80% (58%) of the AIRS pixels on which there are channels whose COP levels are at or above 300 hPa (500 hPa) and the BT data in these channels at these pixels are cloud uncontaminated. Such a significant increase of the usable AIRS cloud-uncontaminated data points is especially useful for regional mesoscale data assimilation and short-term QPF applications.
    • Download: (3.045Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identifying Cloud-Uncontaminated AIRS Spectra from Cloudy FOV Based on Cloud-Top Pressure and Weighting Functions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229431
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorCarrier, M.
    contributor authorZou, X.
    contributor authorLapenta, William M.
    date accessioned2017-06-09T17:28:29Z
    date available2017-06-09T17:28:29Z
    date copyright2007/06/01
    date issued2007
    identifier issn0027-0644
    identifier otherams-85930.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229431
    description abstractAn effort is made to increase the number of Advanced Infrared Sounder (AIRS) cloud-uncontaminated infrared data for regional mesoscale data assimilation and short-term quantitative precipitation forecast (QPF) applications. The cloud-top pressure from Moderate Resolution Imaging Spectroradiometer (MODIS) is utilized in combination with weighting functions (WFs) to develop a channel-based cloudy-data-removal algorithm. This algorithm identifies ?clear channels? for which the brightness temperature (BT) values are not cloud contaminated. A channel-dependent cutoff pressure (COP) level is first determined based on the structure of the WF of each channel. It is usually below the maximum WF level. If the cloud top (as identified by a MODIS cloud mask) is above (below) the COP level of a channel, this channel is then deemed cloudy (clear) and removed (retained). Using this algorithm, a sizable increase of cloud-uncontaminated AIRS data can be obtained. There are more usable domain points for those channels with higher COP levels. A case study is conducted. It is shown that instead of having less than 20% AIRS clear-sky observations, the algorithm finds 80% (58%) of the AIRS pixels on which there are channels whose COP levels are at or above 300 hPa (500 hPa) and the BT data in these channels at these pixels are cloud uncontaminated. Such a significant increase of the usable AIRS cloud-uncontaminated data points is especially useful for regional mesoscale data assimilation and short-term QPF applications.
    publisherAmerican Meteorological Society
    titleIdentifying Cloud-Uncontaminated AIRS Spectra from Cloudy FOV Based on Cloud-Top Pressure and Weighting Functions
    typeJournal Paper
    journal volume135
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3384.1
    journal fristpage2278
    journal lastpage2294
    treeMonthly Weather Review:;2007:;volume( 135 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian