YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part II: Imperfect Model Experiments

    Source: Monthly Weather Review:;2007:;volume( 135 ):;issue: 004::page 1403
    Author:
    Meng, Zhiyong
    ,
    Zhang, Fuqing
    DOI: 10.1175/MWR3352.1
    Publisher: American Meteorological Society
    Abstract: In Part I of this two-part work, the feasibility of using an ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation through various observing system simulation experiments was demonstrated assuming a perfect forecast model for a winter snowstorm event that occurred on 24?26 January 2000. The current study seeks to explore the performance of the EnKF for the same event in the presence of significant model errors due to physical parameterizations by assimilating synthetic sounding and surface observations with typical temporal and spatial resolutions. The EnKF performance with imperfect models is also examined for a warm-season mesoscale convective vortex (MCV) event that occurred on 10?13 June 2003. The significance of model error in both warm- and cold-season events is demonstrated when the use of different cumulus parameterization schemes within different ensembles results in significantly different forecasts in terms of both ensemble mean and spread. Nevertheless, the EnKF performed reasonably well in most experiments with the imperfect model assumption (though its performance can sometimes be significantly degraded). As in Part I, where the perfect model assumption was utilized, most analysis error reduction comes from larger scales. Results show that using a combination of different physical parameterization schemes in the ensemble forecast can significantly improve filter performance. A multischeme ensemble has the potential to provide better background error covariance estimation and a smaller ensemble bias. There are noticeable differences in the performance of the EnKF for different flow regimes. In the imperfect scenarios considered, the improvement over the reference ensembles (pure ensemble forecasts without data assimilation) after 24 h of assimilation for the winter snowstorm event ranges from 36% to 67%. This is higher than the 26%?45% improvement noted after 36 h of assimilation for the warm-season MCV event. Scale- and flow-dependent error growth dynamics and predictability are possible causes for the differences in improvement. Compared to the power spectrum analyses for the snowstorm, it is found that forecast errors and ensemble spreads in the warm-season MCV event have relatively smaller power at larger scales and an overall smaller growth rate.
    • Download: (3.375Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part II: Imperfect Model Experiments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229395
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMeng, Zhiyong
    contributor authorZhang, Fuqing
    date accessioned2017-06-09T17:28:24Z
    date available2017-06-09T17:28:24Z
    date copyright2007/04/01
    date issued2007
    identifier issn0027-0644
    identifier otherams-85898.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229395
    description abstractIn Part I of this two-part work, the feasibility of using an ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation through various observing system simulation experiments was demonstrated assuming a perfect forecast model for a winter snowstorm event that occurred on 24?26 January 2000. The current study seeks to explore the performance of the EnKF for the same event in the presence of significant model errors due to physical parameterizations by assimilating synthetic sounding and surface observations with typical temporal and spatial resolutions. The EnKF performance with imperfect models is also examined for a warm-season mesoscale convective vortex (MCV) event that occurred on 10?13 June 2003. The significance of model error in both warm- and cold-season events is demonstrated when the use of different cumulus parameterization schemes within different ensembles results in significantly different forecasts in terms of both ensemble mean and spread. Nevertheless, the EnKF performed reasonably well in most experiments with the imperfect model assumption (though its performance can sometimes be significantly degraded). As in Part I, where the perfect model assumption was utilized, most analysis error reduction comes from larger scales. Results show that using a combination of different physical parameterization schemes in the ensemble forecast can significantly improve filter performance. A multischeme ensemble has the potential to provide better background error covariance estimation and a smaller ensemble bias. There are noticeable differences in the performance of the EnKF for different flow regimes. In the imperfect scenarios considered, the improvement over the reference ensembles (pure ensemble forecasts without data assimilation) after 24 h of assimilation for the winter snowstorm event ranges from 36% to 67%. This is higher than the 26%?45% improvement noted after 36 h of assimilation for the warm-season MCV event. Scale- and flow-dependent error growth dynamics and predictability are possible causes for the differences in improvement. Compared to the power spectrum analyses for the snowstorm, it is found that forecast errors and ensemble spreads in the warm-season MCV event have relatively smaller power at larger scales and an overall smaller growth rate.
    publisherAmerican Meteorological Society
    titleTests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part II: Imperfect Model Experiments
    typeJournal Paper
    journal volume135
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3352.1
    journal fristpage1403
    journal lastpage1423
    treeMonthly Weather Review:;2007:;volume( 135 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian