YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Horizontal Diffusion for GCMs

    Source: Monthly Weather Review:;2007:;volume( 135 ):;issue: 004::page 1439
    Author:
    Becker, Erich
    ,
    Burkhardt, Ulrike
    DOI: 10.1175/MWR3348.1
    Publisher: American Meteorological Society
    Abstract: The mixing-length-based parameterization of horizontal diffusion, which was originally proposed by Smagorinsky, is revisited. The complete tendencies of horizontal momentum diffusion, the associated frictional heating, and horizontal diffusion of sensible heat in spherical geometry are derived. The formulations are modified for the terrain-following vertical-hybrid-coordinate system in a way that ensures energy and angular momentum conservation at each layer. Test simulations with a simple general circulation model, run at T42 horizontal resolution and for permanent January conditions, confirm the conservation properties and highlight the enhancement of nonlinear horizontal diffusion in areas of high baroclinic activity. The simulated internal variability is dependent on the nature of the horizontal diffusion, with high-frequency variability being enhanced over the northern continents and low-frequency variability being increased (decreased) over the Pacific (Atlantic) Ocean when using nonlinear rather than linear diffusion. Locally reduced horizontal dissipation over Europe is compensated by increased dissipation owing to vertical diffusion, indicating the potential importance of nonlinear horizontal diffusion for gravity wave?resolving simulations. Inspection of the spectral energy reveals that the scheme needs to be modified in order to damp unbalanced ageostrophic motions at the smallest resolved scales more efficiently. A corresponding empirical modification is proposed and proves to work properly.
    • Download: (1.762Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Horizontal Diffusion for GCMs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229391
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBecker, Erich
    contributor authorBurkhardt, Ulrike
    date accessioned2017-06-09T17:28:23Z
    date available2017-06-09T17:28:23Z
    date copyright2007/04/01
    date issued2007
    identifier issn0027-0644
    identifier otherams-85894.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229391
    description abstractThe mixing-length-based parameterization of horizontal diffusion, which was originally proposed by Smagorinsky, is revisited. The complete tendencies of horizontal momentum diffusion, the associated frictional heating, and horizontal diffusion of sensible heat in spherical geometry are derived. The formulations are modified for the terrain-following vertical-hybrid-coordinate system in a way that ensures energy and angular momentum conservation at each layer. Test simulations with a simple general circulation model, run at T42 horizontal resolution and for permanent January conditions, confirm the conservation properties and highlight the enhancement of nonlinear horizontal diffusion in areas of high baroclinic activity. The simulated internal variability is dependent on the nature of the horizontal diffusion, with high-frequency variability being enhanced over the northern continents and low-frequency variability being increased (decreased) over the Pacific (Atlantic) Ocean when using nonlinear rather than linear diffusion. Locally reduced horizontal dissipation over Europe is compensated by increased dissipation owing to vertical diffusion, indicating the potential importance of nonlinear horizontal diffusion for gravity wave?resolving simulations. Inspection of the spectral energy reveals that the scheme needs to be modified in order to damp unbalanced ageostrophic motions at the smallest resolved scales more efficiently. A corresponding empirical modification is proposed and proves to work properly.
    publisherAmerican Meteorological Society
    titleNonlinear Horizontal Diffusion for GCMs
    typeJournal Paper
    journal volume135
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3348.1
    journal fristpage1439
    journal lastpage1454
    treeMonthly Weather Review:;2007:;volume( 135 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian