YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Model Study of an Intense Cutoff Low Pressure System over South Africa

    Source: Monthly Weather Review:;2007:;volume( 135 ):;issue: 003::page 1128
    Author:
    Singleton, A. T.
    ,
    Reason, C. J. C.
    DOI: 10.1175/MWR3311.1
    Publisher: American Meteorological Society
    Abstract: Investigations of extreme rainfall events in the southern African region are limited by the paucity of the observational network. Furthermore, the lack of full radar coverage for South Africa makes quantitative precipitation estimation difficult. Therefore, numerical modeling represents the most effective method for improving the understanding of the mechanisms that contribute to extreme rainfall events in this region with the caveat that accurate validation of model simulations is hampered by the limited observations in the region. This paper describes an intense cutoff low event over South Africa that led to record rainfall and flash flooding along the south coast of the country and adjoining hinterland. Analyses from the Global Forecast System model showed that the cutoff aloft was accompanied by a strong low-level jet (LLJ) impinging onto the south coast where rainfall was heaviest, and that lapse rates were steep in the lower troposphere. Simulations of the event were carried out using a numerical model [i.e., the fifth-generation Pennsylvania State University?National Center for Atmospheric Research Mesoscale Model (MM5)], which showed that severe convection occurred over the ocean on the right-hand side of the LLJ, and at its leading edge where it impinged on the coastal topography. This topography was also very important in providing additional forcing for the ascent of moist air. A factor separation technique was used to show that surface heat fluxes from the warm sea surface temperature (SST) of the Agulhas Current were important in enhancing low-level cyclogenesis, and that topography was important in maintaining the position of the low-level coastal depression, which led to favorable conditions for rainfall remaining in the same area for an extended period of time. It is suggested that improved representation of the tight topographic and SST gradients of the southern African region in NWP models or postprocessing systems would help to provide more accurate forecasts of the amount and location of heavy precipitation during cutoff low events where surface forcing is important.
    • Download: (7.186Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Model Study of an Intense Cutoff Low Pressure System over South Africa

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229351
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSingleton, A. T.
    contributor authorReason, C. J. C.
    date accessioned2017-06-09T17:28:17Z
    date available2017-06-09T17:28:17Z
    date copyright2007/03/01
    date issued2007
    identifier issn0027-0644
    identifier otherams-85858.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229351
    description abstractInvestigations of extreme rainfall events in the southern African region are limited by the paucity of the observational network. Furthermore, the lack of full radar coverage for South Africa makes quantitative precipitation estimation difficult. Therefore, numerical modeling represents the most effective method for improving the understanding of the mechanisms that contribute to extreme rainfall events in this region with the caveat that accurate validation of model simulations is hampered by the limited observations in the region. This paper describes an intense cutoff low event over South Africa that led to record rainfall and flash flooding along the south coast of the country and adjoining hinterland. Analyses from the Global Forecast System model showed that the cutoff aloft was accompanied by a strong low-level jet (LLJ) impinging onto the south coast where rainfall was heaviest, and that lapse rates were steep in the lower troposphere. Simulations of the event were carried out using a numerical model [i.e., the fifth-generation Pennsylvania State University?National Center for Atmospheric Research Mesoscale Model (MM5)], which showed that severe convection occurred over the ocean on the right-hand side of the LLJ, and at its leading edge where it impinged on the coastal topography. This topography was also very important in providing additional forcing for the ascent of moist air. A factor separation technique was used to show that surface heat fluxes from the warm sea surface temperature (SST) of the Agulhas Current were important in enhancing low-level cyclogenesis, and that topography was important in maintaining the position of the low-level coastal depression, which led to favorable conditions for rainfall remaining in the same area for an extended period of time. It is suggested that improved representation of the tight topographic and SST gradients of the southern African region in NWP models or postprocessing systems would help to provide more accurate forecasts of the amount and location of heavy precipitation during cutoff low events where surface forcing is important.
    publisherAmerican Meteorological Society
    titleA Numerical Model Study of an Intense Cutoff Low Pressure System over South Africa
    typeJournal Paper
    journal volume135
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3311.1
    journal fristpage1128
    journal lastpage1150
    treeMonthly Weather Review:;2007:;volume( 135 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian