YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Behavior of Synoptic-Scale Errors in the Eta Model

    Source: Monthly Weather Review:;2006:;volume( 134 ):;issue: 011::page 3355
    Author:
    Elmore, Kimberly L.
    ,
    Schultz, David M.
    ,
    Baldwin, Michael E.
    DOI: 10.1175/MWR3238.1
    Publisher: American Meteorological Society
    Abstract: A previous study of the mean spatial bias errors associated with operational forecast models motivated an examination of the mechanisms responsible for these biases. One hypothesis for the cause of these errors is that mobile synoptic-scale phenomena are partially responsible. This paper explores this hypothesis using 24-h forecasts from the operational Eta Model and an experimental version of the Eta run with Kain?Fritsch convection (EtaKF). For a sample of 44 well-defined upper-level short-wave troughs arriving on the west coast of the United States, 70% were underforecast (as measured by the 500-hPa geopotential height), a likely result of being undersampled by the observational network. For a different sample of 45 troughs that could be tracked easily across the country, consecutive model runs showed that the height errors associated with 44% of the troughs generally decreased in time, 11% increased in time, 18% had relatively steady errors, 2% were uninitialized entering the West Coast, and 24% exhibited some other kind of behavior. Thus, landfalling short-wave troughs were typically underforecast (positive errors, heights too high), but these errors tended to decrease as they moved across the United States, likely a result of being better initialized as the troughs became influenced by more upper-air data. Nevertheless, some errors in short-wave troughs were not corrected as they fell under the influence of supposedly increased data amount and quality. These results indirectly show the effect that the amount and quality of observational data has on the synoptic-scale errors in the models. On the other hand, long-wave ridges tended to be underforecast (negative errors, heights too low) over a much larger horizontal extent. These results are confirmed in a more systematic manner over the entire dataset by segregating the model output at each grid point by the sign of the 500-hPa relative vorticity. Although errors at grid points with positive relative vorticity are small but positive in the western United States, the errors become large and negative farther east. Errors at grid points with negative relative vorticity, on the other hand, are generally negative across the United States. A large negative bias observed in the Eta and EtaKF over the southeast United States is believed to be due to an error in the longwave radiation scheme interacting with water vapor and clouds. This study shows that model errors may be related to the synoptic-scale flow, and even large-scale features such as long-wave troughs can be associated with significant large-scale height errors.
    • Download: (2.791Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Behavior of Synoptic-Scale Errors in the Eta Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229270
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorElmore, Kimberly L.
    contributor authorSchultz, David M.
    contributor authorBaldwin, Michael E.
    date accessioned2017-06-09T17:28:02Z
    date available2017-06-09T17:28:02Z
    date copyright2006/11/01
    date issued2006
    identifier issn0027-0644
    identifier otherams-85785.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229270
    description abstractA previous study of the mean spatial bias errors associated with operational forecast models motivated an examination of the mechanisms responsible for these biases. One hypothesis for the cause of these errors is that mobile synoptic-scale phenomena are partially responsible. This paper explores this hypothesis using 24-h forecasts from the operational Eta Model and an experimental version of the Eta run with Kain?Fritsch convection (EtaKF). For a sample of 44 well-defined upper-level short-wave troughs arriving on the west coast of the United States, 70% were underforecast (as measured by the 500-hPa geopotential height), a likely result of being undersampled by the observational network. For a different sample of 45 troughs that could be tracked easily across the country, consecutive model runs showed that the height errors associated with 44% of the troughs generally decreased in time, 11% increased in time, 18% had relatively steady errors, 2% were uninitialized entering the West Coast, and 24% exhibited some other kind of behavior. Thus, landfalling short-wave troughs were typically underforecast (positive errors, heights too high), but these errors tended to decrease as they moved across the United States, likely a result of being better initialized as the troughs became influenced by more upper-air data. Nevertheless, some errors in short-wave troughs were not corrected as they fell under the influence of supposedly increased data amount and quality. These results indirectly show the effect that the amount and quality of observational data has on the synoptic-scale errors in the models. On the other hand, long-wave ridges tended to be underforecast (negative errors, heights too low) over a much larger horizontal extent. These results are confirmed in a more systematic manner over the entire dataset by segregating the model output at each grid point by the sign of the 500-hPa relative vorticity. Although errors at grid points with positive relative vorticity are small but positive in the western United States, the errors become large and negative farther east. Errors at grid points with negative relative vorticity, on the other hand, are generally negative across the United States. A large negative bias observed in the Eta and EtaKF over the southeast United States is believed to be due to an error in the longwave radiation scheme interacting with water vapor and clouds. This study shows that model errors may be related to the synoptic-scale flow, and even large-scale features such as long-wave troughs can be associated with significant large-scale height errors.
    publisherAmerican Meteorological Society
    titleThe Behavior of Synoptic-Scale Errors in the Eta Model
    typeJournal Paper
    journal volume134
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3238.1
    journal fristpage3355
    journal lastpage3366
    treeMonthly Weather Review:;2006:;volume( 134 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian