YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Principal Component Analysis to CHAMP Radio Occultation Data for Quality Control and a Diagnostic Study

    Source: Monthly Weather Review:;2006:;volume( 134 ):;issue: 011::page 3263
    Author:
    Zeng, Zhen
    ,
    Zou, X.
    DOI: 10.1175/MWR3233.1
    Publisher: American Meteorological Society
    Abstract: A principal component analysis (PCA) method is applied to Challenging Minisatellite Payload (CHAMP) level-2 radio occultation (RO) observations and the corresponding global analyses from the National Centers for Environmental Prediction (NCEP) in March 2004. The PCA is performed on a square symmetric vertical correlation matrix of observed or modeled RO profiles. By decomposing the matrix into pairs of loadings (EOFs) and associated principal components (PCs), outliers are identified and important modes that explain most variances of the vertical variability of the atmosphere as represented by the GPS RO data and the NCEP analyses are extracted and compared. Specifically, a quality control of RO data based on Hotelling?s T?2 index is applied first, which removes 255 RO profiles from 4884 total profiles (about 5%) and smoothes the distributions of PC modes, making the remaining GPS RO dataset much more meaningful. The leading PC mode for global refractivity explains 60% of the total variance and is associated with a symmetric zonal pattern, with positive anomalies in the Tropics and negative anomalies at the two poles. The second PC mode explains an additional 16% of the total variance and shows a dipole pattern with positive anomalies in the North Pole and negative anomalies in the South Pole. Three significant positive anomalies are also found in the second and third PC modes over three predominant convective areas in the western Pacific, South America, and Africa in the Tropics. The first leading PC mode calculated from global NCEP analyses compared favorably with that from CHAMP observations, which proves that NCEP analyses are capable of representing most of the variance of the atmospheric profiles. However, disagreements between CHAMP observations and NCEP analyses are noticed in the second EOF over the Tropics and the Southern Hemisphere (SH). It is also found that the NCEP analyses describe CHAMP-observed larger vertical scale features better than smaller-scale features, captures features of more leading EOF modes in the Northern Hemisphere than in the SH and the Tropics, and does not capture the vertical structures revealed by the EOFs in CHAMP observations near and above the tropopause in the Tropics.
    • Download: (3.068Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Principal Component Analysis to CHAMP Radio Occultation Data for Quality Control and a Diagnostic Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229264
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorZeng, Zhen
    contributor authorZou, X.
    date accessioned2017-06-09T17:28:01Z
    date available2017-06-09T17:28:01Z
    date copyright2006/11/01
    date issued2006
    identifier issn0027-0644
    identifier otherams-85780.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229264
    description abstractA principal component analysis (PCA) method is applied to Challenging Minisatellite Payload (CHAMP) level-2 radio occultation (RO) observations and the corresponding global analyses from the National Centers for Environmental Prediction (NCEP) in March 2004. The PCA is performed on a square symmetric vertical correlation matrix of observed or modeled RO profiles. By decomposing the matrix into pairs of loadings (EOFs) and associated principal components (PCs), outliers are identified and important modes that explain most variances of the vertical variability of the atmosphere as represented by the GPS RO data and the NCEP analyses are extracted and compared. Specifically, a quality control of RO data based on Hotelling?s T?2 index is applied first, which removes 255 RO profiles from 4884 total profiles (about 5%) and smoothes the distributions of PC modes, making the remaining GPS RO dataset much more meaningful. The leading PC mode for global refractivity explains 60% of the total variance and is associated with a symmetric zonal pattern, with positive anomalies in the Tropics and negative anomalies at the two poles. The second PC mode explains an additional 16% of the total variance and shows a dipole pattern with positive anomalies in the North Pole and negative anomalies in the South Pole. Three significant positive anomalies are also found in the second and third PC modes over three predominant convective areas in the western Pacific, South America, and Africa in the Tropics. The first leading PC mode calculated from global NCEP analyses compared favorably with that from CHAMP observations, which proves that NCEP analyses are capable of representing most of the variance of the atmospheric profiles. However, disagreements between CHAMP observations and NCEP analyses are noticed in the second EOF over the Tropics and the Southern Hemisphere (SH). It is also found that the NCEP analyses describe CHAMP-observed larger vertical scale features better than smaller-scale features, captures features of more leading EOF modes in the Northern Hemisphere than in the SH and the Tropics, and does not capture the vertical structures revealed by the EOFs in CHAMP observations near and above the tropopause in the Tropics.
    publisherAmerican Meteorological Society
    titleApplication of Principal Component Analysis to CHAMP Radio Occultation Data for Quality Control and a Diagnostic Study
    typeJournal Paper
    journal volume134
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3233.1
    journal fristpage3263
    journal lastpage3282
    treeMonthly Weather Review:;2006:;volume( 134 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian