YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Semi-Implicit Runge–Kutta Time-Difference Scheme for the Two-Dimensional Shallow-Water Equations

    Source: Monthly Weather Review:;2006:;volume( 134 ):;issue: 010::page 2916
    Author:
    Kar, Sajal K.
    DOI: 10.1175/MWR3214.1
    Publisher: American Meteorological Society
    Abstract: A semi-implicit, two time-level, three-step iterative time-difference scheme is proposed for the two-dimensional nonlinear shallow-water equations in a conservative flux form. After a semi-implicit linearization of the governing equations, the linear gravity wave terms are time discretized implicitly using a second-order trapezoidal scheme applied over each iterative step, whereas the nonlinear terms including horizontal advection and other terms left over from the semi-implicit linearization are time discretized explicitly using a third-order Runge?Kutta scheme. The effectiveness of the scheme in terms of numerical accuracy, stability, and efficiency is established through a forced initial-boundary value problem studied using a two-dimensional shallow-water model.
    • Download: (1.160Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Semi-Implicit Runge–Kutta Time-Difference Scheme for the Two-Dimensional Shallow-Water Equations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229243
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorKar, Sajal K.
    date accessioned2017-06-09T17:27:58Z
    date available2017-06-09T17:27:58Z
    date copyright2006/10/01
    date issued2006
    identifier issn0027-0644
    identifier otherams-85761.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229243
    description abstractA semi-implicit, two time-level, three-step iterative time-difference scheme is proposed for the two-dimensional nonlinear shallow-water equations in a conservative flux form. After a semi-implicit linearization of the governing equations, the linear gravity wave terms are time discretized implicitly using a second-order trapezoidal scheme applied over each iterative step, whereas the nonlinear terms including horizontal advection and other terms left over from the semi-implicit linearization are time discretized explicitly using a third-order Runge?Kutta scheme. The effectiveness of the scheme in terms of numerical accuracy, stability, and efficiency is established through a forced initial-boundary value problem studied using a two-dimensional shallow-water model.
    publisherAmerican Meteorological Society
    titleA Semi-Implicit Runge–Kutta Time-Difference Scheme for the Two-Dimensional Shallow-Water Equations
    typeJournal Paper
    journal volume134
    journal issue10
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3214.1
    journal fristpage2916
    journal lastpage2926
    treeMonthly Weather Review:;2006:;volume( 134 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian