YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Sensitivity of Simulated Convective Storms to Variations in Prescribed Single-Moment Microphysics Parameters that Describe Particle Distributions, Sizes, and Numbers

    Source: Monthly Weather Review:;2006:;volume( 134 ):;issue: 009::page 2547
    Author:
    Cohen, Charles
    ,
    McCaul, Eugene W.
    DOI: 10.1175/MWR3195.1
    Publisher: American Meteorological Society
    Abstract: The sensitivity of cloud-scale simulations of deep convection to variations in prescribed microphysics parameters is studied, using the single-moment scheme in the Regional Atmospheric Modeling System (RAMS) model. Realistic changes were made to the shape parameters in the gamma distributions of the diameters of precipitating hydrometeors and of cloud droplets, in the number concentration of cloud droplets, and in the mean size of the hail and graupel. Simulations were performed with two initial soundings that are identical except for their temperature. The precipitation rate at the ground is not very sensitive to changes in the value of the shape parameter used for all precipitating hydrometeors (rain, hail, graupel, snow, and aggregates) or to the mean size of the hail and graupel, owing to counteracting effects. For example, with a larger shape parameter value, there is a greater production of precipitation by collection of cloud water, but also a larger rate of evaporation of the liquid precipitation. However, with a larger shape parameter value, the greater production of precipitation by collection and the increased evaporation result in more low-level cooling by the downdraft. Specifying larger hail and graupel results in less low-level cooling by the downdraft. The simulation with the cold initial sounding showed a change in storm propagation velocity when the specified sizes of hail and graupel were increased, but this did not occur when the warm initial sounding was used. With a larger shape parameter for cloud water or with a larger number concentration of cloud droplets, there is less autoconversion and less collection of cloud water and, consequently, much less precipitation at the ground and denser cirrus anvils. While the number concentration of cloud droplets can be forecast in some models with parameterized microphysics, at present the shape parameter for cloud water cannot and must, therefore, be carefully selected.
    • Download: (3.200Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Sensitivity of Simulated Convective Storms to Variations in Prescribed Single-Moment Microphysics Parameters that Describe Particle Distributions, Sizes, and Numbers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229223
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorCohen, Charles
    contributor authorMcCaul, Eugene W.
    date accessioned2017-06-09T17:27:55Z
    date available2017-06-09T17:27:55Z
    date copyright2006/09/01
    date issued2006
    identifier issn0027-0644
    identifier otherams-85742.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229223
    description abstractThe sensitivity of cloud-scale simulations of deep convection to variations in prescribed microphysics parameters is studied, using the single-moment scheme in the Regional Atmospheric Modeling System (RAMS) model. Realistic changes were made to the shape parameters in the gamma distributions of the diameters of precipitating hydrometeors and of cloud droplets, in the number concentration of cloud droplets, and in the mean size of the hail and graupel. Simulations were performed with two initial soundings that are identical except for their temperature. The precipitation rate at the ground is not very sensitive to changes in the value of the shape parameter used for all precipitating hydrometeors (rain, hail, graupel, snow, and aggregates) or to the mean size of the hail and graupel, owing to counteracting effects. For example, with a larger shape parameter value, there is a greater production of precipitation by collection of cloud water, but also a larger rate of evaporation of the liquid precipitation. However, with a larger shape parameter value, the greater production of precipitation by collection and the increased evaporation result in more low-level cooling by the downdraft. Specifying larger hail and graupel results in less low-level cooling by the downdraft. The simulation with the cold initial sounding showed a change in storm propagation velocity when the specified sizes of hail and graupel were increased, but this did not occur when the warm initial sounding was used. With a larger shape parameter for cloud water or with a larger number concentration of cloud droplets, there is less autoconversion and less collection of cloud water and, consequently, much less precipitation at the ground and denser cirrus anvils. While the number concentration of cloud droplets can be forecast in some models with parameterized microphysics, at present the shape parameter for cloud water cannot and must, therefore, be carefully selected.
    publisherAmerican Meteorological Society
    titleThe Sensitivity of Simulated Convective Storms to Variations in Prescribed Single-Moment Microphysics Parameters that Describe Particle Distributions, Sizes, and Numbers
    typeJournal Paper
    journal volume134
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3195.1
    journal fristpage2547
    journal lastpage2565
    treeMonthly Weather Review:;2006:;volume( 134 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian