YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Explicitly Accounting for Observation Error in Categorical Verification of Forecasts

    Source: Monthly Weather Review:;2006:;volume( 134 ):;issue: 006::page 1600
    Author:
    Bowler, Neill E.
    DOI: 10.1175/MWR3138.1
    Publisher: American Meteorological Society
    Abstract: Given an accurate representation of errors in observations it is possible to remove the effect of those errors from categorical verification scores. The errors in the observations are treated as additive white noise that is statistically independent of the true value of the quantity being observed. This method can be applied to both probabilistic and deterministic verification where the verification method uses a categorical approach. In general this improves the apparent performance of a forecasting system, indicating that forecasting systems are often performing better than they might first appear.
    • Download: (186.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Explicitly Accounting for Observation Error in Categorical Verification of Forecasts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229159
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBowler, Neill E.
    date accessioned2017-06-09T17:27:44Z
    date available2017-06-09T17:27:44Z
    date copyright2006/06/01
    date issued2006
    identifier issn0027-0644
    identifier otherams-85685.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229159
    description abstractGiven an accurate representation of errors in observations it is possible to remove the effect of those errors from categorical verification scores. The errors in the observations are treated as additive white noise that is statistically independent of the true value of the quantity being observed. This method can be applied to both probabilistic and deterministic verification where the verification method uses a categorical approach. In general this improves the apparent performance of a forecasting system, indicating that forecasting systems are often performing better than they might first appear.
    publisherAmerican Meteorological Society
    titleExplicitly Accounting for Observation Error in Categorical Verification of Forecasts
    typeJournal Paper
    journal volume134
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3138.1
    journal fristpage1600
    journal lastpage1606
    treeMonthly Weather Review:;2006:;volume( 134 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian