YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part I: Cloud Analysis and Its Impact

    Source: Monthly Weather Review:;2006:;volume( 134 ):;issue: 002::page 675
    Author:
    Hu, Ming
    ,
    Xue, Ming
    ,
    Brewster, Keith
    DOI: 10.1175/MWR3092.1
    Publisher: American Meteorological Society
    Abstract: In this two-part paper, the impact of level-II Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity data on the prediction of a cluster of tornadic thunderstorms in the Advanced Regional Prediction System (ARPS) model are studied. Radar reflectivity data are used primarily in a cloud analysis procedure that retrieves the amount of hydrometeors and adjusts in-cloud temperature, moisture, and cloud fields, while radial velocity data are analyzed through a three-dimensional variational (3DVAR) scheme that contains a mass divergence constraint in the cost function. In Part I, the impact of the cloud analysis and modifications to the scheme are examined while Part II focuses on the impact of radial velocity and the mass divergence constraint. The case studied is that of the 28 March 2000 Fort Worth, Texas, tornado outbreaks. The same case was studied by Xue et al. using the ARPS Data Analysis System (ADAS) and an earlier version of the cloud analysis procedure with WSR-88D level-III data. Since then, several modifications to the cloud analysis procedure, including those to the in-cloud temperature adjustment and the analysis of precipitation species, have been made. They are described in detail with examples. The assimilation and predictions use a 3-km grid nested inside a 9-km one. The level-II reflectivity data are assimilated, through the cloud analysis, at 10-min intervals in a 1-h period that ends a little over 1 h preceding the first tornado outbreak. Experiments with different settings within the cloud analysis procedure are examined. It is found that the experiment using the improved cloud analysis procedure with reflectivity data can capture the important characteristics of the main tornadic thunderstorm more accurately than the experiment using the early version of cloud analysis. The contributions of different modifications to the above improvements are investigated.
    • Download: (5.159Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part I: Cloud Analysis and Its Impact

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229108
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHu, Ming
    contributor authorXue, Ming
    contributor authorBrewster, Keith
    date accessioned2017-06-09T17:27:36Z
    date available2017-06-09T17:27:36Z
    date copyright2006/02/01
    date issued2006
    identifier issn0027-0644
    identifier otherams-85639.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229108
    description abstractIn this two-part paper, the impact of level-II Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity data on the prediction of a cluster of tornadic thunderstorms in the Advanced Regional Prediction System (ARPS) model are studied. Radar reflectivity data are used primarily in a cloud analysis procedure that retrieves the amount of hydrometeors and adjusts in-cloud temperature, moisture, and cloud fields, while radial velocity data are analyzed through a three-dimensional variational (3DVAR) scheme that contains a mass divergence constraint in the cost function. In Part I, the impact of the cloud analysis and modifications to the scheme are examined while Part II focuses on the impact of radial velocity and the mass divergence constraint. The case studied is that of the 28 March 2000 Fort Worth, Texas, tornado outbreaks. The same case was studied by Xue et al. using the ARPS Data Analysis System (ADAS) and an earlier version of the cloud analysis procedure with WSR-88D level-III data. Since then, several modifications to the cloud analysis procedure, including those to the in-cloud temperature adjustment and the analysis of precipitation species, have been made. They are described in detail with examples. The assimilation and predictions use a 3-km grid nested inside a 9-km one. The level-II reflectivity data are assimilated, through the cloud analysis, at 10-min intervals in a 1-h period that ends a little over 1 h preceding the first tornado outbreak. Experiments with different settings within the cloud analysis procedure are examined. It is found that the experiment using the improved cloud analysis procedure with reflectivity data can capture the important characteristics of the main tornadic thunderstorm more accurately than the experiment using the early version of cloud analysis. The contributions of different modifications to the above improvements are investigated.
    publisherAmerican Meteorological Society
    title3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part I: Cloud Analysis and Its Impact
    typeJournal Paper
    journal volume134
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3092.1
    journal fristpage675
    journal lastpage698
    treeMonthly Weather Review:;2006:;volume( 134 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian