YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reply

    Source: Monthly Weather Review:;2005:;volume( 133 ):;issue: 012::page 3724
    Author:
    Krasnopolsky, Vladimir M.
    ,
    Fox-Rabinovitz, Michael S.
    ,
    Chalikov, Dmitry V.
    DOI: 10.1175/MWR3079.1
    Publisher: American Meteorological Society
    Abstract: This reply is aimed at clarifying and further discussing the methodological aspects of this neural network application for a better understanding of the technique by the journal readership. The similarities and differences of two approaches and their areas of application are discussed. These two approaches outline a new interdisciplinary field based on application of neural networks (and probably other modern machine or statistical learning techniques) to significantly speed up calculations of time-consuming components of atmospheric and oceanic numerical models.
    • Download: (57.75Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reply

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229094
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorKrasnopolsky, Vladimir M.
    contributor authorFox-Rabinovitz, Michael S.
    contributor authorChalikov, Dmitry V.
    date accessioned2017-06-09T17:27:34Z
    date available2017-06-09T17:27:34Z
    date copyright2005/12/01
    date issued2005
    identifier issn0027-0644
    identifier otherams-85626.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229094
    description abstractThis reply is aimed at clarifying and further discussing the methodological aspects of this neural network application for a better understanding of the technique by the journal readership. The similarities and differences of two approaches and their areas of application are discussed. These two approaches outline a new interdisciplinary field based on application of neural networks (and probably other modern machine or statistical learning techniques) to significantly speed up calculations of time-consuming components of atmospheric and oceanic numerical models.
    publisherAmerican Meteorological Society
    titleReply
    typeJournal Paper
    journal volume133
    journal issue12
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR3079.1
    journal fristpage3724
    journal lastpage3729
    treeMonthly Weather Review:;2005:;volume( 133 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian