YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observations of the 11 June Dryline during IHOP_2002—A Null Case for Convection Initiation

    Source: Monthly Weather Review:;2006:;volume( 134 ):;issue: 001::page 336
    Author:
    Cai, Huaqing
    ,
    Lee, Wen-Chau
    ,
    Weckwerth, Tammy M.
    ,
    Flamant, Cyrille
    ,
    Murphey, Hanne V.
    DOI: 10.1175/MWR2998.1
    Publisher: American Meteorological Society
    Abstract: The detailed analysis of the three-dimensional structure of a dryline observed over the Oklahoma panhandle during the International H2O Project (IHOP_2002) on 11 June 2002 is presented. High-resolution observations obtained from the National Center for Atmospheric Research Electra Doppler Radar (ELDORA), S-band dual-polarization Doppler radar (S-Pol), water vapor differential absorption lidar (DIAL) Lidar pour l'Etude des Interactions Aérosols Nuages Dynamique Rayonnement et du Cycle de l'Eau (LEANDRE II; translated as Lidar for the Study of Aerosol?Cloud?Dynamics?Radiation Interactions and of the Water Cycle) as well as Learjet dropsondes are used to reveal the evolution of the dryline structure during late afternoon hours when the dryline was retreating to the northwest. The dryline reflectivity shows significant variability in the along-line direction. Dry air was observed to overrun the moist air in vertical cross sections similar to a density current. The updrafts associated with the dryline were 2?3 m s?1 and were able to initiate boundary-layer-based clouds along the dryline. The formation of this dryline was caused by high equivalent potential temperature air pushing northwestward toward a stationary front in the warm sector. Middle-level clouds with radar reflectivity greater than 18 dBZe near the dryline were detected by ELDORA. A roll boundary, which was associated with larger convergence and moisture content, was evident in the S-Pol data. It is found that the instability parameters most favorable for convection initiation were actually associated with the roll boundary, not the dryline. A storm was initiated near the roll boundary probably as a result of the combination of the favorable instability parameters and stronger upward forcing. It is noted that both the 11 June 2002 dryline and the roll boundary presented in this paper would not be identified if the special datasets from IHOP_2002 were not available. Although all model runs [fifth-generation Pennsylvania State University?NCAR Mesoscale Model (MM5), Meso Eta, and Rapid Update Cycle (RUC)] suggested deep convection over the Oklahoma panhandle and several cloud lines were observed near the dryline, the dryline itself did not initiate any storms. The reasons why the dryline failed to produce any storm inside the IHOP_2002 intensive observation region are discussed. Both synoptic-scale and mesoscale conditions that were detrimental to convection initiation in this case are investigated in great detail.
    • Download: (4.020Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observations of the 11 June Dryline during IHOP_2002—A Null Case for Convection Initiation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4229004
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorCai, Huaqing
    contributor authorLee, Wen-Chau
    contributor authorWeckwerth, Tammy M.
    contributor authorFlamant, Cyrille
    contributor authorMurphey, Hanne V.
    date accessioned2017-06-09T17:27:14Z
    date available2017-06-09T17:27:14Z
    date copyright2006/01/01
    date issued2006
    identifier issn0027-0644
    identifier otherams-85545.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229004
    description abstractThe detailed analysis of the three-dimensional structure of a dryline observed over the Oklahoma panhandle during the International H2O Project (IHOP_2002) on 11 June 2002 is presented. High-resolution observations obtained from the National Center for Atmospheric Research Electra Doppler Radar (ELDORA), S-band dual-polarization Doppler radar (S-Pol), water vapor differential absorption lidar (DIAL) Lidar pour l'Etude des Interactions Aérosols Nuages Dynamique Rayonnement et du Cycle de l'Eau (LEANDRE II; translated as Lidar for the Study of Aerosol?Cloud?Dynamics?Radiation Interactions and of the Water Cycle) as well as Learjet dropsondes are used to reveal the evolution of the dryline structure during late afternoon hours when the dryline was retreating to the northwest. The dryline reflectivity shows significant variability in the along-line direction. Dry air was observed to overrun the moist air in vertical cross sections similar to a density current. The updrafts associated with the dryline were 2?3 m s?1 and were able to initiate boundary-layer-based clouds along the dryline. The formation of this dryline was caused by high equivalent potential temperature air pushing northwestward toward a stationary front in the warm sector. Middle-level clouds with radar reflectivity greater than 18 dBZe near the dryline were detected by ELDORA. A roll boundary, which was associated with larger convergence and moisture content, was evident in the S-Pol data. It is found that the instability parameters most favorable for convection initiation were actually associated with the roll boundary, not the dryline. A storm was initiated near the roll boundary probably as a result of the combination of the favorable instability parameters and stronger upward forcing. It is noted that both the 11 June 2002 dryline and the roll boundary presented in this paper would not be identified if the special datasets from IHOP_2002 were not available. Although all model runs [fifth-generation Pennsylvania State University?NCAR Mesoscale Model (MM5), Meso Eta, and Rapid Update Cycle (RUC)] suggested deep convection over the Oklahoma panhandle and several cloud lines were observed near the dryline, the dryline itself did not initiate any storms. The reasons why the dryline failed to produce any storm inside the IHOP_2002 intensive observation region are discussed. Both synoptic-scale and mesoscale conditions that were detrimental to convection initiation in this case are investigated in great detail.
    publisherAmerican Meteorological Society
    titleObservations of the 11 June Dryline during IHOP_2002—A Null Case for Convection Initiation
    typeJournal Paper
    journal volume134
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR2998.1
    journal fristpage336
    journal lastpage354
    treeMonthly Weather Review:;2006:;volume( 134 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian