YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influences of a Winter Wheat Belt on the Evolution of the Boundary Layer

    Source: Monthly Weather Review:;2005:;volume( 133 ):;issue: 008::page 2178
    Author:
    McPherson, Renee A.
    ,
    Stensrud, David J.
    DOI: 10.1175/MWR2968.1
    Publisher: American Meteorological Society
    Abstract: Evidence exists that a large-scale alteration of land use by humans can cause changes in the climatology of the region. The largest-scale transformation is the substitution of native landscape by agricultural cropland. This modeling study examines the impact of a direct substitution of one type of grassland for another?in this case, the replacement of tallgrass prairie with winter wheat. The primary difference between these grasses is their growing season: native prairie grasses of the U.S. Great Plains are warm-season grasses whereas winter wheat is a cool-season grass. Case study simulations were conducted for 27 March 2000 and 5 April 2000?days analyzed in previous observational studies. The simulations provided additional insight into the physical processes involved and changes that occurred throughout the depth of the planetary boundary layer. Results indicate the following: 1) with the proper adjustment of vegetation parameters, land-use type, fractional vegetation coverage, and soil moisture, the numerical simulations were able to capture the overall patterns measured near the surface across a growing wheat belt during benign springtime conditions in Oklahoma; 2) the impacts of the mesoscale belt of growing wheat included increased values of latent heat flux and decreased values of sensible heat flux over the wheat, increased values of atmospheric moisture near the surface above and downstream of the wheat, and a shallower planetary boundary layer (PBL) above and downstream of the wheat; 3) in the sheared environments that were examined, a shallower PBL that resulted from growing wheat (rather than natural vegetation) led to reduced entrainment of higher momentum air into the PBL and, thus, weaker winds within the PBL over and downwind from the growing wheat; 4) for the cases studied, gradients in sensible heat were insufficient to establish an unambiguous vegetation breeze or its corresponding mesoscale circulation; 5) the initialization of soil moisture within the root zone aided latent heat fluxes from growing vegetation; and 6) reasonable specification of land surface parameters was required for the correct simulation and prediction of surface heat fluxes and resulting boundary layer development.
    • Download: (3.134Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influences of a Winter Wheat Belt on the Evolution of the Boundary Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228971
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMcPherson, Renee A.
    contributor authorStensrud, David J.
    date accessioned2017-06-09T17:27:03Z
    date available2017-06-09T17:27:03Z
    date copyright2005/08/01
    date issued2005
    identifier issn0027-0644
    identifier otherams-85515.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228971
    description abstractEvidence exists that a large-scale alteration of land use by humans can cause changes in the climatology of the region. The largest-scale transformation is the substitution of native landscape by agricultural cropland. This modeling study examines the impact of a direct substitution of one type of grassland for another?in this case, the replacement of tallgrass prairie with winter wheat. The primary difference between these grasses is their growing season: native prairie grasses of the U.S. Great Plains are warm-season grasses whereas winter wheat is a cool-season grass. Case study simulations were conducted for 27 March 2000 and 5 April 2000?days analyzed in previous observational studies. The simulations provided additional insight into the physical processes involved and changes that occurred throughout the depth of the planetary boundary layer. Results indicate the following: 1) with the proper adjustment of vegetation parameters, land-use type, fractional vegetation coverage, and soil moisture, the numerical simulations were able to capture the overall patterns measured near the surface across a growing wheat belt during benign springtime conditions in Oklahoma; 2) the impacts of the mesoscale belt of growing wheat included increased values of latent heat flux and decreased values of sensible heat flux over the wheat, increased values of atmospheric moisture near the surface above and downstream of the wheat, and a shallower planetary boundary layer (PBL) above and downstream of the wheat; 3) in the sheared environments that were examined, a shallower PBL that resulted from growing wheat (rather than natural vegetation) led to reduced entrainment of higher momentum air into the PBL and, thus, weaker winds within the PBL over and downwind from the growing wheat; 4) for the cases studied, gradients in sensible heat were insufficient to establish an unambiguous vegetation breeze or its corresponding mesoscale circulation; 5) the initialization of soil moisture within the root zone aided latent heat fluxes from growing vegetation; and 6) reasonable specification of land surface parameters was required for the correct simulation and prediction of surface heat fluxes and resulting boundary layer development.
    publisherAmerican Meteorological Society
    titleInfluences of a Winter Wheat Belt on the Evolution of the Boundary Layer
    typeJournal Paper
    journal volume133
    journal issue8
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR2968.1
    journal fristpage2178
    journal lastpage2199
    treeMonthly Weather Review:;2005:;volume( 133 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian