YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finescale Topography and the MC2 Dynamics Kernel

    Source: Monthly Weather Review:;2005:;volume( 133 ):;issue: 006::page 1463
    Author:
    Girard, Claude
    ,
    Benoit, Robert
    ,
    Desgagné, Michel
    DOI: 10.1175/MWR2931.1
    Publisher: American Meteorological Society
    Abstract: The Canadian Mesoscale Compressible Community (MC2) model provided daily forecasts across the Alps at 3-km resolution during the Mesoscale Alpine Programme (MAP) field phase of 1999. Among the results of this endeavor, some have had an immediate impact on MC2 itself as it increasingly became evident that the model was spuriously too sensitive to finescale orographic forcing. The model solves the Euler equations of motion using a semi-implicit semi-Lagrangian scheme in an oblique terrain-following coordinate. To improve model behavior, typical approaches were tried at first. These included a generalization of the coordinate transformation to make the terrain influence decay much more quickly with height as well as the introduction of nonisothermal basic states to diminish the amplitude of numerical truncation errors. The concept of piecewise-constant finite elements was invoked to reduce coding arbitrariness. But it was later pointed out that the problem was very specific and due to a numerical inconsistency. The true height of model grid points is fixed and known in height-based coordinates. Nevertheless, it was discovered that for this semi-Lagrangian scheme to be consistent, the departure height is an unknown that must be obtained in the same manner as the other unknowns.
    • Download: (2.100Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finescale Topography and the MC2 Dynamics Kernel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228929
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorGirard, Claude
    contributor authorBenoit, Robert
    contributor authorDesgagné, Michel
    date accessioned2017-06-09T17:26:54Z
    date available2017-06-09T17:26:54Z
    date copyright2005/06/01
    date issued2005
    identifier issn0027-0644
    identifier otherams-85478.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228929
    description abstractThe Canadian Mesoscale Compressible Community (MC2) model provided daily forecasts across the Alps at 3-km resolution during the Mesoscale Alpine Programme (MAP) field phase of 1999. Among the results of this endeavor, some have had an immediate impact on MC2 itself as it increasingly became evident that the model was spuriously too sensitive to finescale orographic forcing. The model solves the Euler equations of motion using a semi-implicit semi-Lagrangian scheme in an oblique terrain-following coordinate. To improve model behavior, typical approaches were tried at first. These included a generalization of the coordinate transformation to make the terrain influence decay much more quickly with height as well as the introduction of nonisothermal basic states to diminish the amplitude of numerical truncation errors. The concept of piecewise-constant finite elements was invoked to reduce coding arbitrariness. But it was later pointed out that the problem was very specific and due to a numerical inconsistency. The true height of model grid points is fixed and known in height-based coordinates. Nevertheless, it was discovered that for this semi-Lagrangian scheme to be consistent, the departure height is an unknown that must be obtained in the same manner as the other unknowns.
    publisherAmerican Meteorological Society
    titleFinescale Topography and the MC2 Dynamics Kernel
    typeJournal Paper
    journal volume133
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR2931.1
    journal fristpage1463
    journal lastpage1477
    treeMonthly Weather Review:;2005:;volume( 133 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian